Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
FEBS J ; 289(18): 5571-5598, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35338694

RESUMEN

Mycobacteria express enzymes from both the de novo and purine-salvage pathways. However, the regulation of these processes and the roles of individual metabolic enzymes have not been sufficiently detailed. Both Mycobacterium tuberculosis (Mtb) and Mycobacterium smegmatis (Msm) possess three guaB genes, but information is only available on guaB2, which encodes an essential inosine 5'-monophosphate dehydrogenase (IMPDH) involved in de novo purine biosynthesis. This study shows that guaB1, annotated in databases as a putative IMPDH, encodes a guanosine 5'-monophosphate reductase (GMPR), which recycles guanosine monophosphate to inosine monophosphate within the purine-salvage pathway and contains a cystathionine-ß-synthase domain (CBS), which is essential for enzyme activity. GMPR activity is allosterically regulated by the ATP/GTP ratio in a pH-dependent manner. Bioinformatic analysis has indicated the presence of GMPRs containing CBS domains across the entire Actinobacteria phylum.


Asunto(s)
Cistationina , Mycobacterium tuberculosis , Adenosina Trifosfato , Cistationina betasintasa/genética , GMP-Reductasa/genética , GMP-Reductasa/metabolismo , Guanosina Monofosfato/metabolismo , Guanosina Trifosfato , IMP Deshidrogenasa/genética , IMP Deshidrogenasa/metabolismo , Inosina , Inosina Monofosfato/metabolismo , Mycobacterium tuberculosis/metabolismo
2.
J Chem Inf Model ; 62(5): 1259-1267, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35192366

RESUMEN

Therapeutic peptides offer potential advantages over small molecules in terms of selectivity, affinity, and their ability to target "undruggable" proteins that are associated with a wide range of pathologies. Despite their importance, current molecular design capabilities that inform medicinal chemistry decisions on peptide programs are limited. More specifically, there are unmet needs for structure-activity relationship (SAR) analysis and visualization of linear, cyclic, and cross-linked peptides containing non-natural motifs, which are widely used in drug discovery. To bridge this gap, we developed PepSeA (Peptide Sequence Alignment and Visualization), an open-source, freely available package of sequence-based tools (https://github.com/Merck/PepSeA). PepSeA enables multiple sequence alignment of non-natural amino acids and enhanced visualization with the hierarchical editing language for macromolecules (HELM). Via stepwise SAR analysis of a ChEMBL peptide data set, we demonstrate the utility of PepSeA to accelerate decision making in lead optimization campaigns in pharmaceutical setting. PepSeA represents an initial attempt to expand cheminformatics capabilities for therapeutic peptides and to enable rapid and more efficient design-make-test cycles.


Asunto(s)
Péptidos , Proteínas , Secuencia de Aminoácidos , Quimioinformática , Péptidos/química , Alineación de Secuencia
3.
ACS Synth Biol ; 10(2): 357-370, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33433999

RESUMEN

Protein engineering is the discipline of developing useful proteins for applications in research, therapeutic, and industrial processes by modification of naturally occurring proteins or by invention of de novo proteins. Modern protein engineering relies on the ability to rapidly generate and screen diverse libraries of mutant proteins. However, design of mutant libraries is typically hampered by scale and complexity, necessitating development of advanced automation and optimization tools that can improve efficiency and accuracy. At present, automated library design tools are functionally limited or not freely available. To address these issues, we developed Mutation Maker, an open source mutagenic oligo design software for large-scale protein engineering experiments. Mutation Maker is not only specifically tailored to multisite random and directed mutagenesis protocols, but also pioneers bespoke mutagenic oligo design for de novo gene synthesis workflows. Enabled by a novel bundle of orchestrated heuristics, optimization, constraint-satisfaction and backtracking algorithms, Mutation Maker offers a versatile toolbox for gene diversification design at industrial scale. Supported by in silico simulations and compelling experimental validation data, Mutation Maker oligos produce diverse gene libraries at high success rates irrespective of genes or vectors used. Finally, Mutation Maker was created as an extensible platform on the notion that directed evolution techniques will continue to evolve and revolutionize current and future-oriented applications.


Asunto(s)
Mutagénesis Sitio-Dirigida/métodos , Mutagénesis , Mutación , Oligonucleótidos/genética , Proteínas/genética , Programas Informáticos , Algoritmos , Codón/genética , Simulación por Computador , Evolución Molecular Dirigida/métodos , Escherichia coli/genética , Biblioteca de Genes , Proteínas Mutantes
4.
Sci Rep ; 10(1): 12767, 2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32728070

RESUMEN

Recombinant interferon-α (IFN-α) treatment functionally cures chronic hepatitis B virus (HBV) infection in some individuals and suppresses virus replication in hepatocytes infected in vitro. We studied the antiviral effect of conditioned media (CM) from peripheral blood mononuclear cells (PBMCs) stimulated with agonists of Toll-like receptors (TLRs) 2, 7, 8 and 9. We found that CM from PBMCs stimulated with dual-acting TLR7/8 (R848) and TLR2/7 (CL413) agonists were more potent drivers of inhibition of HBe and HBs antigen secretion from HBV-infected primary human hepatocytes (PHH) than CM from PBMCs stimulated with single-acting TLR7 (CL264) or TLR9 (CpG-B) agonists. Inhibition of HBV in PHH did not correlate with the quantity of PBMC-produced IFN-α, but it was a complex function of multiple secreted cytokines. More importantly, we found that the CM that efficiently inhibited HBV production in freshly isolated PHH via various cytokine repertoires and mechanisms did not reduce covalently closed circular (ccc)DNA levels. We confirmed our data with a cell culture model based on HepG2-NTCP cells and the plasmacytoid dendritic cell line GEN2.2. Collectively, our data show the importance of dual-acting TLR agonists inducing broad cytokine repertoires. The development of poly-specific TLR agonists provides novel opportunities towards functional HBV cure.


Asunto(s)
Hepatitis B Crónica/virología , Hepatocitos/virología , Leucocitos Mononucleares/metabolismo , Receptores Toll-Like/agonistas , Replicación Viral/efectos de los fármacos , Medios de Cultivo Condicionados/farmacología , Citocinas/metabolismo , ADN Circular/metabolismo , Sistemas de Liberación de Medicamentos , Células Hep G2 , Virus de la Hepatitis B/fisiología , Humanos , Inmunidad Innata/efectos de los fármacos , Interferón-alfa/metabolismo , Receptores Toll-Like/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...