Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 18796, 2024 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138319

RESUMEN

Marine monitoring efforts are increasingly supported by opportunistic shipboard surveys. However, opportunistic survey methods often require adaptation to suit the vessel and the operations being conducted onboard. Whilst best-practice techniques for surveying marine wildlife on vessels of opportunity are yet to be established, testing and development of alternative methods can provide means for capturing ecological information in otherwise under-surveyed areas. Explicitly, survey methods can be improved while baseline ecological data for new regions are gathered simultaneously. Herein, we tested different survey approaches on a vessel of opportunity in a remote offshore area where little is known about the community composition of top-order marine vertebrate predators: western and south-western Tasmania, Australia. We found that continuous surveys provide greater species counts than structured "snapshot" surveys over the course of a voyage, but that structured surveys can be more practical when managing factors such as observer fatigue. Moreover, we provide a baseline dataset on the marine vertebrate community encountered in western and south-western Tasmania. This information will be critically important for industry and conservation management objectives, and is key to our understanding of the offshore ecosystem around Tasmania.


Asunto(s)
Aves , Mamíferos , Animales , Aves/fisiología , Tasmania , Organismos Acuáticos , Ecosistema , Navíos , Monitoreo del Ambiente/métodos , Biodiversidad , Conservación de los Recursos Naturales/métodos , Encuestas y Cuestionarios
2.
Nature ; 615(7954): 858-865, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36949201

RESUMEN

Human society is dependent on nature1,2, but whether our ecological foundations are at risk remains unknown in the absence of systematic monitoring of species' populations3. Knowledge of species fluctuations is particularly inadequate in the marine realm4. Here we assess the population trends of 1,057 common shallow reef species from multiple phyla at 1,636 sites around Australia over the past decade. Most populations decreased over this period, including many tropical fishes, temperate invertebrates (particularly echinoderms) and southwestern Australian macroalgae, whereas coral populations remained relatively stable. Population declines typically followed heatwave years, when local water temperatures were more than 0.5 °C above temperatures in 2008. Following heatwaves5,6, species abundances generally tended to decline near warm range edges, and increase near cool range edges. More than 30% of shallow invertebrate species in cool latitudes exhibited high extinction risk, with rapidly declining populations trapped by deep ocean barriers, preventing poleward retreat as temperatures rise. Greater conservation effort is needed to safeguard temperate marine ecosystems, which are disproportionately threatened and include species with deep evolutionary roots. Fundamental among such efforts, and broader societal needs to efficiently adapt to interacting anthropogenic and natural pressures, is greatly expanded monitoring of species' population trends7,8.


Asunto(s)
Antozoos , Arrecifes de Coral , Calor Extremo , Peces , Calentamiento Global , Invertebrados , Océanos y Mares , Agua de Mar , Algas Marinas , Animales , Australia , Peces/clasificación , Invertebrados/clasificación , Calentamiento Global/estadística & datos numéricos , Algas Marinas/clasificación , Dinámica Poblacional , Densidad de Población , Agua de Mar/análisis , Extinción Biológica , Conservación de los Recursos Naturales/tendencias , Equinodermos/clasificación
3.
Curr Biol ; 32(19): 4128-4138.e3, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36150387

RESUMEN

Warming seas, marine heatwaves, and habitat degradation are increasingly widespread phenomena affecting marine biodiversity, yet our understanding of their broader impacts is largely derived from collective insights from independent localized studies. Insufficient systematic broadscale monitoring limits our understanding of the true extent of these impacts and our capacity to track these at scales relevant to national policies and international agreements. Using an extensive time series of co-located reef fish community structure and habitat data spanning 12 years and the entire Australian continent, we found that reef fish community responses to changing temperatures and habitats are dynamic and widespread but regionally patchy. Shifts in composition and abundance of the fish community often occurred within 2 years of environmental or habitat change, although the relative importance of these two mechanisms of climate impact tended to differ between tropical and temperate zones. The clearest of these changes on temperate and subtropical reefs were temperature related, with responses measured by the reef fish thermal index indicating reshuffling according to the thermal affinities of species present. On low latitude coral reefs, the community generalization index indicated shifting dominance of habitat generalist fishes through time, concurrent with changing coral cover. Our results emphasize the importance of maintaining local ecological detail when scaling up datasets to inform national policies and global biodiversity targets. Scaled-up ecological monitoring is needed to discriminate among increasingly diverse drivers of large-scale biodiversity change and better connect presently disjointed systems of biodiversity observation, indicator research, and governance.


Asunto(s)
Antozoos , Arrecifes de Coral , Animales , Antozoos/fisiología , Australia , Biodiversidad , Cambio Climático , Ecosistema , Peces/fisiología
4.
PLoS One ; 12(3): e0173427, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28301546

RESUMEN

The population of Southern elephant seals (Mirounga leonina) at Macquarie Island has declined since the 1960s, and is thought to be due to changing oceanic conditions leading to reductions in the foraging success of Macquarie Island breeding females. To test this hypothesis, we used a 55-year-old data set on weaning size of southern elephant seals to quantify a decrease in weaning size from a period of population stability in 1950s to its present state of on-going decline. Being capital breeders, the size of elephant seal pups at weaning is a direct consequence of maternal foraging success in the preceding year. During the 1940-1950s, the mean of female pups at weaning was similar between the Heard and Macquarie Island populations, while the snout-tail-length length of male weaners from Heard Island were longer than their conspecifics at Macquarie Island. Additionally, the snout-tail-length of pups at weaning decreased by 3cm between the 1950s and 1990s in the Macquarie Island population, concurrent with the observed population decline. Given the importance of weaning size in determining first-year survival and recruitment rates, the decline in the size at weaning suggests that the decline in the Macquarie Island population has, to some extent, been driven by reduced maternal foraging success, consequent declines in the size of pups at weaning, leading to reduced first-year survival rates and recruitment of breeding females into the population 3 to 4 years later.


Asunto(s)
Cambio Climático , Especies en Peligro de Extinción , Phocidae/crecimiento & desarrollo , Phocidae/fisiología , Animales , Tamaño Corporal , Cambio Climático/historia , Conducta Alimentaria , Femenino , Historia del Siglo XX , Historia del Siglo XXI , Conducta Materna , Dinámica Poblacional , Cola (estructura animal)/anatomía & histología , Destete
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...