Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Chem Biol ; 27(6): 698-707.e7, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32243812

RESUMEN

Escherichia coli broadly colonize the intestinal tract of humans and produce a variety of small molecule signals. However, many of these small molecules remain unknown. Here, we describe a family of widely distributed bacterial metabolites termed the "indolokines." In E. coli, the indolokines are upregulated in response to a redox stressor via aspC and tyrB transaminases. Although indolokine 1 represents a previously unreported metabolite, four of the indolokines (2-5) were previously shown to be derived from indole-3-carbonyl nitrile (ICN) in the plant pathogen defense response. We show that the indolokines are produced in a convergent evolutionary manner relative to plants, enhance E. coli persister cell formation, outperform ICN protection in an Arabidopsis thaliana-Pseudomonas syringae infection model, trigger a hallmark plant innate immune response, and activate distinct immunological responses in primary human tissues. Our molecular studies link a family of cellular stress-induced metabolites to defensive responses across bacteria, plants, and humans.


Asunto(s)
Escherichia coli/metabolismo , Indoles/metabolismo , Regulación hacia Arriba , Animales , Arabidopsis/metabolismo , Escherichia coli/citología , Heces/microbiología , Humanos , Indoles/química , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Estrés Oxidativo , Transducción de Señal
2.
Nat Commun ; 10(1): 3444, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31371717

RESUMEN

Plants synthesize numerous ecologically specialized, lineage-specific metabolites through biosynthetic gene duplication and functional specialization. However, it remains unclear how duplicated genes are wired into existing regulatory networks. We show that the duplicated gene CYP82C2 has been recruited into the WRKY33 regulon and indole-3-carbonylnitrile (ICN) biosynthetic pathway through exaptation of a retroduplicated LINE retrotransposon (EPCOT3) into an enhancer. The stepwise development of a chromatin-accessible WRKY33-binding site on EPCOT3 has potentiated the regulatory neofunctionalization of CYP82C2 and the evolution of inducible defense metabolite 4-hydroxy-ICN in Arabidopsis thaliana. Although transposable elements (TEs) have long been recognized to have the potential to rewire regulatory networks, these results establish a more complete understanding of how duplicated genes and TEs contribute in concert to chemical diversity and pathogen defense.


Asunto(s)
Arabidopsis/genética , Elementos Transponibles de ADN/genética , Regulación de la Expresión Génica de las Plantas , Inmunidad de la Planta/inmunología , Regulón/genética , Regulón/fisiología , Arabidopsis/inmunología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sitios de Unión , Vías Biosintéticas/genética , Sistema Enzimático del Citocromo P-450/genética , Evolución Molecular , Duplicación de Gen , Genoma de Planta , Glucosinolatos/metabolismo , Indoles/metabolismo , Isoleucina/análogos & derivados , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Pseudomonas syringae/patogenicidad , Metabolismo Secundario , Tiazoles/metabolismo , Factores de Transcripción/metabolismo
3.
Annu Rev Plant Biol ; 70: 585-604, 2019 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-31035830

RESUMEN

Over several decades, glucosinolates have become a model system for the study of specialized metabolic diversity in plants. The near-complete identification of biosynthetic enzymes, regulators, and transporters has provided support for the role of gene duplication and subsequent changes in gene expression, protein function, and substrate specificity as the evolutionary bases of glucosinolate diversity. Here, we provide examples of how whole-genome duplications, gene rearrangements, and substrate promiscuity potentiated the evolution of glucosinolate biosynthetic enzymes, regulators, and transporters by natural selection. This in turn may have led to the repeated evolution of glucosinolate metabolism and diversity in higher plants.


Asunto(s)
Duplicación de Gen , Glucosinolatos , Reordenamiento Génico , Plantas
4.
Front Plant Sci ; 10: 1775, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32082343

RESUMEN

The plant kingdom produces hundreds of thousands of specialized bioactive metabolites, some with pharmaceutical and biotechnological importance. Their biosynthesis and function have been studied for decades, but comparatively less is known about how transcription factors with overlapping functions and contrasting regulatory activities coordinately control the dynamics and output of plant specialized metabolism. Here, we performed temporal studies on pathogen-infected intact host plants with perturbed transcription factors. We identified WRKY33 as the condition-dependent master regulator and MYB51 as the dual functional regulator in a hierarchical gene network likely responsible for the gene expression dynamics and metabolic fluxes in the camalexin and 4-hydroxy-indole-3-carbonylnitrile (4OH-ICN) pathways. This network may have also facilitated the regulatory capture of the newly evolved 4OH-ICN pathway in Arabidopsis thaliana by the more-conserved transcription factor MYB51. It has long been held that the plasticity of plant specialized metabolism and the canalization of development should be differently regulated; our findings imply a common hierarchical regulatory architecture orchestrated by transcription factors for specialized metabolism and development, making it an attractive target for metabolic engineering.

5.
Plant Cell ; 29(8): 1907-1926, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28733420

RESUMEN

Lignification of cell wall appositions is a conserved basal defense mechanism in the plant innate immune response. However, the genetic pathway controlling defense-induced lignification remains unknown. Here, we demonstrate the Arabidopsis thaliana SG2-type R2R3-MYB transcription factor MYB15 as a regulator of defense-induced lignification and basal immunity. Loss of MYB15 reduces the content but not the composition of defense-induced lignin, whereas constitutive expression of MYB15 increases lignin content independently of immune activation. Comparative transcriptional and metabolomics analyses implicate MYB15 as necessary for the defense-induced synthesis of guaiacyl lignin and the basal synthesis of the coumarin metabolite scopoletin. MYB15 directly binds to the secondary wall MYB-responsive element consensus sequence, which encompasses the AC elements, to drive lignification. The myb15 and lignin biosynthetic mutants show increased susceptibility to the bacterial pathogen Pseudomonas syringae, consistent with defense-induced lignin having a major role in basal immunity. A scopoletin biosynthetic mutant also shows increased susceptibility independently of immune activation, consistent with a role in preformed defense. Our results support a role for phenylalanine-derived small molecules in preformed and inducible Arabidopsis defense, a role previously dominated by tryptophan-derived small molecules. Understanding the regulatory network linking lignin biosynthesis to plant growth and defense will help lignin engineering efforts to improve the production of biofuels and aromatic industrial products as well as increase disease resistance in energy and agricultural crops.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Arabidopsis/metabolismo , Lignina/metabolismo , Inmunidad de la Planta , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Flagelina/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Lignina/biosíntesis , Fenoles/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica , Pseudomonas syringae/fisiología , Escopoletina/farmacología , Homología de Secuencia de Aminoácido , Solubilidad , Factores de Transcripción/genética
6.
Methods Mol Biol ; 1578: 61-79, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28220416

RESUMEN

The biogenesis and functionality of pattern recognition receptors (PRRs) are critical for robust plant immune responses. Here, we present methods to determine the N-glycosylation state and ligand-induced activity of these receptors for comparative quantitative analysis. These techniques can be used to identify mutants and chemical inhibitors affecting PRR biogenesis and functionality. When combined, these techniques can provide useful insights on biological processes necessary to synthesize a properly membrane-localized and ligand-responsive PRR.


Asunto(s)
Arabidopsis/metabolismo , Receptores de Reconocimiento de Patrones/química , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Western Blotting , Glicosilación , Ligandos , Mutación , Receptores de Reconocimiento de Patrones/genética , Receptores de Reconocimiento de Patrones/metabolismo
7.
Phytochemistry ; 131: 26-43, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27569707

RESUMEN

Plants are unrivaled in the natural world in both the number and complexity of secondary metabolites they produce, and the ubiquitous phenylpropanoids and the lineage-specific glucosinolates represent two such large and chemically diverse groups. Advances in genome-enabled biochemistry and metabolomic technologies have greatly increased the understanding of their metabolic networks in diverse plant species. There also has been some progress in elucidating the gene regulatory networks that are key to their synthesis, accumulation and function. This review highlights what is currently known about the gene regulatory networks and the stable sub-networks of transcription factors at their cores that regulate the production of these plant secondary metabolites and the differentiation of specialized cell types that are equally important to their defensive function. Remarkably, some of these core components are evolutionarily conserved between secondary metabolism and specialized cell development and across distantly related plant species. These findings suggest that the more ancient gene regulatory networks for the differentiation of fundamental cell types may have been recruited and remodeled for the generation of the vast majority of plant secondary metabolites and their specialized tissues.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Proteínas Proto-Oncogénicas c-myb/metabolismo , Proteínas de Arabidopsis/metabolismo , Glucosinolatos/metabolismo , Lignina/metabolismo , Metabolismo Secundario
8.
Nature ; 525(7569): 376-9, 2015 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-26352477

RESUMEN

Thousands of putative biosynthetic genes in Arabidopsis thaliana have no known function, which suggests that there are numerous molecules contributing to plant fitness that have not yet been discovered. Prime among these uncharacterized genes are cytochromes P450 upregulated in response to pathogens. Here we start with a single pathogen-induced P450 (ref. 5), CYP82C2, and use a combination of untargeted metabolomics and coexpression analysis to uncover the complete biosynthetic pathway to 4-hydroxyindole-3-carbonyl nitrile (4-OH-ICN), a previously unknown Arabidopsis metabolite. This metabolite harbours cyanogenic functionality that is unprecedented in plants and exceedingly rare in nature; furthermore, the aryl cyanohydrin intermediate in the 4-OH-ICN pathway reveals a latent capacity for cyanogenic glucoside biosynthesis in Arabidopsis. By expressing 4-OH-ICN biosynthetic enzymes in Saccharomyces cerevisiae and Nicotiana benthamiana, we reconstitute the complete pathway in vitro and in vivo and validate the functions of its enzymes. Arabidopsis 4-OH-ICN pathway mutants show increased susceptibility to the bacterial pathogen Pseudomonas syringae, consistent with a role in inducible pathogen defence. Arabidopsis has been the pre-eminent model system for studying the role of small molecules in plant innate immunity; our results uncover a new branch of indole metabolism distinct from the canonical camalexin pathway, and support a role for this pathway in the Arabidopsis defence response. These results establish a more complete framework for understanding how the model plant Arabidopsis uses small molecules in pathogen defence.


Asunto(s)
Arabidopsis/metabolismo , Arabidopsis/microbiología , Indoles/metabolismo , Nitrilos/metabolismo , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/inmunología , Pseudomonas syringae/inmunología , Pseudomonas syringae/patogenicidad , Arabidopsis/genética , Arabidopsis/inmunología , Proteínas de Arabidopsis/metabolismo , Vías Biosintéticas/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Regulación de la Expresión Génica de las Plantas , Glucósidos/biosíntesis , Inmunidad Innata/genética , Inmunidad Innata/inmunología , Metabolómica , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/genética , Saccharomyces cerevisiae/genética , Metabolismo Secundario , Tiazoles/metabolismo , Nicotiana/genética , Transcriptoma , Virulencia
9.
Front Plant Sci ; 6: 1108, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26779203

RESUMEN

Plants, like mammals, rely on their innate immune system to perceive and discriminate among the majority of their microbial pathogens. Unlike mammals, plants respond to this molecular dialog by unleashing a complex chemical arsenal of defense metabolites to resist or evade pathogen infection. In basal or non-host resistance, plants utilize signal transduction pathways to detect "non-self," "damaged-self," and "altered-self"- associated molecular patterns and translate these "danger" signals into largely inducible chemical defenses. The WD40 repeat (WDR)-containing proteins Gß and TTG1 are constituents of two independent ternary protein complexes functioning at opposite ends of a plant immune signaling pathway. They are also encoded by single-copy genes that are ubiquitous in higher plants, implying the limited diversity and functional conservation of their respective complexes. In this review, we summarize what is currently known about the evolutionary history of these WDR-containing ternary complexes, their repertoire and combinatorial interactions, and their downstream effectors and pathways in plant defense.

11.
Plant Cell ; 22(3): 973-90, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20348432

RESUMEN

Despite the fact that roots are the organs most subject to microbial interactions, very little is known about the response of roots to microbe-associated molecular patterns (MAMPs). By monitoring transcriptional activation of beta-glucuronidase reporters and MAMP-elicited callose deposition, we show that three MAMPs, the flagellar peptide Flg22, peptidoglycan, and chitin, trigger a strong tissue-specific response in Arabidopsis thaliana roots, either at the elongation zone for Flg22 and peptidoglycan or in the mature parts of the roots for chitin. Ethylene signaling, the 4-methoxy-indole-3-ylmethylglucosinolate biosynthetic pathway, and the PEN2 myrosinase, but not salicylic acid or jasmonic acid signaling, play major roles in this MAMP response. We also show that Flg22 induces the cytochrome P450 CYP71A12-dependent exudation of the phytoalexin camalexin by Arabidopsis roots. The phytotoxin coronatine, an Ile-jasmonic acid mimic produced by Pseudomonas syringae pathovars, suppresses MAMP-activated responses in the roots. This suppression requires the E3 ubiquitin ligase COI1 as well as the transcription factor JIN1/MYC2 but does not rely on salicylic acid-jasmonic acid antagonism. These experiments demonstrate the presence of highly orchestrated and tissue-specific MAMP responses in roots and potential pathogen-encoded mechanisms to block these MAMP-elicited signaling pathways.


Asunto(s)
Arabidopsis/inmunología , Interacciones Huésped-Patógeno , Raíces de Plantas/inmunología , Transducción de Señal , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Quitina/metabolismo , Ciclopentanos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Etilenos/metabolismo , Flagelos/metabolismo , Glucanos/metabolismo , Indoles/metabolismo , N-Glicosil Hidrolasas/metabolismo , Oxilipinas/metabolismo , Peptidoglicano/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/inmunología , Plantas Modificadas Genéticamente/metabolismo , Pseudomonas , ARN de Planta/genética , Ácido Salicílico/metabolismo , Tiazoles/metabolismo
12.
Nat Genet ; 41(2): 258-63, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19122662

RESUMEN

The functions of the plant body rely on interactions among distinct and nonequivalent cell types. The comparison of transcriptomes from different cell types should expose the transcriptional networks that underlie cellular attributes and contributions. Using laser microdissection and microarray profiling, we have produced a cell type transcriptome atlas that includes 40 cell types from rice (Oryza sativa) shoot, root and germinating seed at several developmental stages, providing patterns of cell specificity for individual genes and gene classes. Cell type comparisons uncovered previously unrecognized properties, including cell-specific promoter motifs and coexpressed cognate binding factor candidates, interaction partner candidates and hormone response centers. We inferred developmental regulatory hierarchies of gene expression in specific cell types by comparison of several stages within root, shoot and embryo.


Asunto(s)
Tipificación del Cuerpo/genética , Perfilación de la Expresión Génica , Oryza/citología , Oryza/genética , Atlas como Asunto , Secuencia de Bases , Análisis por Conglomerados , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/fisiología , Modelos Biológicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Especificidad de Órganos/genética , Oryza/embriología , Oryza/fisiología , Componentes Aéreos de las Plantas/citología , Componentes Aéreos de las Plantas/embriología , Componentes Aéreos de las Plantas/genética , Componentes Aéreos de las Plantas/crecimiento & desarrollo , Semillas/citología , Semillas/genética
13.
Science ; 323(5910): 95-101, 2009 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-19095898

RESUMEN

The perception of pathogen or microbe-associated molecular pattern molecules by plants triggers a basal defense response analogous to animal innate immunity and is defined partly by the deposition of the glucan polymer callose at the cell wall at the site of pathogen contact. Transcriptional and metabolic profiling in Arabidopsis mutants, coupled with the monitoring of pathogen-triggered callose deposition, have identified major roles in pathogen response for the plant hormone ethylene and the secondary metabolite 4-methoxy-indol-3-ylmethylglucosinolate. Two genes, PEN2 and PEN3, are also necessary for resistance to pathogens and are required for both callose deposition and glucosinolate activation, suggesting that the pathogen-triggered callose response is required for resistance to microbial pathogens. Our study shows that well-studied plant metabolites, previously identified as important in avoiding damage by herbivores, are also required as a component of the plant defense response against microbial pathogens.


Asunto(s)
Arabidopsis/inmunología , Arabidopsis/metabolismo , Flagelina/inmunología , Glucosinolatos/metabolismo , Inmunidad Innata , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Aminoaciltransferasas/genética , Aminoaciltransferasas/metabolismo , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Glucanos/biosíntesis , Glicósido Hidrolasas/metabolismo , Hidrólisis , Indoles/metabolismo , Indoles/farmacología , Mutación , N-Glicosil Hidrolasas/genética , N-Glicosil Hidrolasas/metabolismo , Fragmentos de Péptidos/inmunología , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacología , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
Plant Cell ; 17(7): 1994-2008, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15937226

RESUMEN

Generally, cell division can be uncoupled from multicellular development, but more recent evidence suggests that cell cycle progression and arrest is coupled to organogenesis and growth. We describe a recessive mutant, swellmap (smp), with reduced organ size and cell number. This defect is partially compensated for by an increase in final cell size. The mutation causes a precocious arrest of cell proliferation in the organ primordium and possibly reduces the rate of cell division there. The mutation proved to be an epigenetic mutation (renamed smp(epi)) that defined a single locus, SMP1, but affected the expression of both SMP1 and a second very similar gene, SMP2. Both genes encode CCHC zinc finger proteins with similarities to step II splicing factors involved in 3' splice site selection. Genetic knockouts demonstrate that the genes are functionally redundant and essential. SMP1 expression is associated with regions of cell proliferation. Overexpression of SMP1 produced an increase in organ cell number and a partial decrease in cell expansion. The smp(epi) mutation does not affect expression of eukaryotic cell cycle regulator genes CYCD3;1 and CDC2A but affects expression of the cell proliferation gene STRUWWELPETER (SWP) whose protein has similarities to Med150/Rgr1-like subunits of the Mediator complex required for transcriptional activation. Introduction of SWP cDNA into smp(epi) plants fully restored them to wild-type, but the expression of both SMP1 and SMP2 were also restored in these lines, suggesting a physical interaction among the three proteins and/or genes. We propose that step II splicing factors and a transcriptional Mediator-like complex are involved in the timing of cell cycle arrest during leaf development.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Epigénesis Genética/genética , Genes cdc/fisiología , Elementos Reguladores de la Transcripción/genética , Ribonucleoproteínas/genética , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/aislamiento & purificación , Secuencia de Bases/genética , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Aumento de la Célula , Proliferación Celular , ADN Complementario/análisis , ADN Complementario/genética , Regulación de la Expresión Génica de las Plantas/genética , Genes Recesivos/genética , Datos de Secuencia Molecular , Mutación/genética , Hojas de la Planta/genética , Empalme del ARN/genética , Factores de Empalme de ARN , Ribonucleoproteínas/aislamiento & purificación , Ribonucleoproteínas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/aislamiento & purificación
15.
Plant Physiol ; 138(2): 767-77, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15894745

RESUMEN

Polar auxin transport has been implicated in the induction of vascular tissue and in the definition of vein positions. Leaves treated with chemical inhibitors of polar auxin transport exhibited vascular phenotypes that include increased vein thickness and vascularization. We describe a recessive mutant, thickvein (tkv), which develops thicker veins in leaves and in inflorescence stems. The increased vein thickness is attributable to an increased number of vascular cells. Mutant plants have smaller leaves and shorter inflorescence stems, and this reduction in organ size and height is accompanied by an increase in organ vascularization, which appears to be attributable to an increase in the recruitment of cells into veins. Furthermore, although floral development is normal, auxin transport in the inflorescence stem is significantly reduced in the mutant, suggesting that the defect in auxin transport is responsible for the vascular phenotypes. In the primary root, the veins appear morphologically normal, but root growth in the tkv mutant is hypersensitive to exogenous cytokinin. The tkv mutation was found to reside in the ACL5 gene, which encodes a spermine synthase and whose expression is specific to provascular cells. We propose that ACL5/TKV is involved in vein definition (defining the boundaries between veins and nonvein regions) and in polar auxin transport, and that polyamines are involved in this process.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Hojas de la Planta/anatomía & histología , Espermina Sintasa/genética , Secuencia de Aminoácidos , Arabidopsis/anatomía & histología , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Datos de Secuencia Molecular , Mutación , Hojas de la Planta/genética , Tallos de la Planta/anatomía & histología , Tallos de la Planta/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Espermina Sintasa/metabolismo
16.
Plant Cell ; 14(11): 2707-22, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12417696

RESUMEN

The formation of the venation pattern in leaves is ideal for examining signaling pathways that recognize and respond to spatial and temporal information, because the pattern is two-dimensional and heritable and the resulting veins influence the three-dimensional spatial organization of the surrounding differentiating leaf cell types. We identified a provascular/procambial cell-specific gene that encodes a Leu-rich repeat receptor kinase, which we named VASCULAR HIGHWAY1 (VH1). A change in the expression domain and level of VH1 marks the transition from an uncommitted provascular state to a committed procambial state in early vascular development. The coding sequence, expression pattern, and transgenic phenotypes together suggest that VH1 transduces extracellular spatial and temporal signals into downstream cell differentiation responses in provascular/procambial cells.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/enzimología , Hojas de la Planta/enzimología , Proteínas Quinasas/genética , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/genética , Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Datos de Secuencia Molecular , Reguladores del Crecimiento de las Plantas/farmacología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Proteínas Quinasas/metabolismo , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...