Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(17): e2320934121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38630726

RESUMEN

Cullin RING E3 ligases (CRL) have emerged as key regulators of disease-modifying pathways and therapeutic targets. Cullin3 (Cul3)-containing CRL (CRL3) has been implicated in regulating hepatic insulin and oxidative stress signaling. However, CRL3 function in liver pathophysiology is poorly defined. Here, we report that hepatocyte Cul3 knockout results in rapid resolution of steatosis in obese mice. However, the remarkable resistance of hepatocyte Cul3 knockout mice to developing steatosis does not lead to overall metabolic improvement but causes systemic metabolic disturbances. Liver transcriptomics analysis identifies that CRL3 inactivation causes persistent activation of the nuclear factor erythroid 2-related factor 2 (NRF2) antioxidant defense pathway, which also reprograms the lipid transcriptional network to prevent TG storage. Furthermore, global metabolomics reveals that NRF2 activation induces numerous NAD+-consuming aldehyde dehydrogenases to increase the cellular NADH/NAD+ ratio, a redox imbalance termed NADH reductive stress that inhibits the glycolysis-citrate-lipogenesis axis in Cul3 knockout livers. As a result, this NRF2-induced cellular lipid storage defect promotes hepatic ceramide accumulation, elevates circulating fatty acids, and worsens systemic insulin resistance in a vicious cycle. Hepatic lipid accumulation is restored, and liver injury and hyperglycemia are attenuated when NRF2 activation and NADH reductive stress are abolished in hepatocyte Cul3/Nrf2 double-knockout mice. The resistance to hepatic steatosis, hyperglycemia, and NADH reductive stress are observed in hepatocyte Keap1 knockout mice with NRF2 activation. In summary, our study defines a critical role of CRL3 in hepatic metabolic regulation and demonstrates that the CRL3 downstream NRF2 overactivation causes hepatic metabolic maladaptation to obesity and insulin resistance.


Asunto(s)
Hígado Graso , Hiperglucemia , Resistencia a la Insulina , Animales , Ratones , Ubiquitina-Proteína Ligasas/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , NAD/metabolismo , Proteínas Cullin/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Ratones Noqueados , Lípidos
2.
Cells ; 12(10)2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37408204

RESUMEN

Cyp2c70 knockout mice lack the enzyme that produces muricholic acids and show a "human-like" hydrophobic bile acid pool-induced hepatobiliary injury. In this study, we investigated the potential anti-cholestasis effect of glycine-conjugated ß muricholic acid (G-ß-MCA) in male Cyp2c70 KO mice based on its hydrophilic physiochemical property and signaling property as an farnesoid X receptor (FXR) antagonist. Our results showed that G-ß-MCA treatment for 5 weeks alleviated ductular reaction and liver fibrosis and improved gut barrier function. Analysis of bile acid metabolism suggested that exogenously administered G-ß-MCA was poorly absorbed in the small intestine and mostly deconjugated in the large intestine and converted to taurine-conjugated MCA (T-MCA) in the liver, leading to T-MCA enrichment in the bile and small intestine. These changes decreased the biliary and intestine bile acid hydrophobicity index. Furthermore, G-ß-MCA treatment decreased intestine bile acid absorption via unknown mechanisms, resulting in increased fecal bile acid excretion and a reduction in total bile acid pool size. In conclusion, G-ß-MCA treatment reduces the bile acid pool size and hydrophobicity and improves liver fibrosis and gut barrier function in Cyp2c70 KO mice.


Asunto(s)
Ácidos y Sales Biliares , Glicina , Ratones , Masculino , Humanos , Animales , Ratones Noqueados , Glicina/farmacología , Cirrosis Hepática/tratamiento farmacológico
3.
J Lipid Res ; 64(3): 100340, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36737039

RESUMEN

Therapeutic reduction of hydrophobic bile acids exposure is considered beneficial in cholestasis. The Cyp2c70 KO mice lack hydrophilic muricholic acids and have a human-like hydrophobic bile acid pool resulting in hepatobiliary injury. This study investigates if combining an apical sodium-dependent bile acid transporter inhibitor GSK2330672 (GSK) and fibroblast growth factor-15 (FGF15) overexpression, via simultaneous inhibition of bile acid synthesis and gut bile acid uptake, achieves enhanced therapeutic efficacy in alleviating hepatobiliary injury in Cyp2c70 KO mice. The effects of GSK, adeno-associated virus (AAV)-FGF15, and the combined treatment on bile acid metabolism and cholangiopathy were compared in Cyp2c70 KO mice. In female Cyp2c70 KO mice with more severe cholangiopathy than male Cyp2c70 KO mice, the combined treatment was more effective in reversing portal inflammation, ductular reaction, and fibrosis than AAV-FGF15, while GSK was largely ineffective. The combined treatment reduced bile acid pool by ∼80% compared to ∼50% reduction by GSK or AAV-FGF15, and enriched tauro-conjugated ursodeoxycholic acid in the bile. Interestingly, the male Cyp2c70 KO mice treated with AAV-FGF15 or GSK showed attenuated cholangiopathy and portal fibrosis but the combined treatment was ineffective despite reducing bile acid pool. Both male and female Cyp2c70 KO mice showed impaired gut barrier integrity. AAV-FGF15 and the combined treatment, but not GSK, reduced gut exposure to lithocholic acid and improved gut barrier function. In conclusion, the combined treatment improved therapeutic efficacy against cholangiopathy than either single treatment in the female but not male Cyp2c70 KO mice by reducing bile acid pool size and hydrophobicity.


Asunto(s)
Colestasis , Hígado , Animales , Femenino , Humanos , Ratones , Ácidos y Sales Biliares/metabolismo , Colestasis/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Fibrosis , Hígado/metabolismo , Ratones Endogámicos C57BL , Receptores Citoplasmáticos y Nucleares/metabolismo
4.
Nat Commun ; 13(1): 5696, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36171419

RESUMEN

Fatty liver is a highly heterogenous condition driven by various pathogenic factors in addition to the severity of steatosis. Protein insufficiency has been causally linked to fatty liver with incompletely defined mechanisms. Here we report that fatty liver is a sulfur amino acid insufficient state that promotes metabolic inflexibility via limiting coenzyme A availability. We demonstrate that the nutrient-sensing transcriptional factor EB synergistically stimulates lysosome proteolysis and methionine adenosyltransferase to increase cysteine pool that drives the production of coenzyme A and glutathione, which support metabolic adaptation and antioxidant defense during increased lipid influx. Intriguingly, mice consuming an isocaloric protein-deficient Western diet exhibit selective hepatic cysteine, coenzyme A and glutathione deficiency and acylcarnitine accumulation, which are reversed by cystine supplementation without normalizing dietary protein intake. These findings support a pathogenic link of dysregulated sulfur amino acid metabolism to metabolic inflexibility that underlies both overnutrition and protein malnutrition-associated fatty liver development.


Asunto(s)
Aminoácidos Sulfúricos , Hígado Graso , Aminoácidos Sulfúricos/metabolismo , Animales , Antioxidantes/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Coenzima A/metabolismo , Cisteína/metabolismo , Cistina/metabolismo , Proteínas en la Dieta/metabolismo , Hígado Graso/metabolismo , Glutatión/metabolismo , Homeostasis , Lípidos , Hígado/metabolismo , Metionina/metabolismo , Metionina Adenosiltransferasa/metabolismo , Ratones , Oxidación-Reducción
5.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35115401

RESUMEN

Hepatic insulin resistance is a hallmark feature of nonalcoholic fatty liver disease and type-2 diabetes and significantly contributes to systemic insulin resistance. Abnormal activation of nutrient and stress-sensing kinases leads to serine/threonine phosphorylation of insulin receptor substrate (IRS) and subsequent IRS proteasome degradation, which is a key underlying cause of hepatic insulin resistance. Recently, members of the cullin-RING E3 ligases (CRLs) have emerged as mediators of IRS protein turnover, but the pathophysiological roles and therapeutic implications of this cellular signaling regulation is largely unknown. CRLs are activated upon cullin neddylation, a process of covalent conjugation of a ubiquitin-like protein called Nedd8 to a cullin scaffold. Here, we report that pharmacological inhibition of cullin neddylation by MLN4924 (Pevonedistat) rapidly decreases hepatic glucose production and attenuates hyperglycemia in mice. Mechanistically, neddylation inhibition delays CRL-mediated IRS protein turnover to prolong insulin action in hepatocytes. In vitro knockdown of either cullin 1 or cullin 3, but not other cullin members, attenuates insulin-induced IRS protein degradation and enhances cellular insulin signaling activation. In contrast, in vivo knockdown of liver cullin 3, but not cullin 1, stabilizes hepatic IRS and decreases blood glucose, which recapitulates the effect of MLN4924 treatment. In summary, these findings suggest that pharmacological inhibition of cullin neddylation represents a therapeutic approach for improving hepatic insulin signaling and lowering blood glucose.


Asunto(s)
Proteínas Cullin/metabolismo , Ciclopentanos/farmacología , Hiperglucemia/tratamiento farmacológico , Insulina/metabolismo , Hígado/efectos de los fármacos , Proteína NEDD8/metabolismo , Pirimidinas/farmacología , Receptor de Insulina/metabolismo , Animales , Línea Celular , Hiperglucemia/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/efectos de los fármacos , Ubiquitinas/metabolismo
6.
Liver Res ; 6(4): 276-283, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36819659

RESUMEN

Background and aims: Several bile acids-based monotherapies have been developed for non-alcoholic steatohepatitis (NASH) treatment but clinical trial findings suggest that they do not satisfactorily improve NASH and liver fibrosis in many patients. Recently, we have shown that combining a gut-restricted apical sodium-bile acid transporter (ASBT) inhibitor GSK2330672 (GSK) with adeno-associated virus (AAV)-mediated liver fibroblast growth factor 15 (FGF15) overexpression provides significantly improved efficacy than either single treatment against NASH and liver fibrosis in a high fat, cholesterol, and fructose (HFCFr) diet-induced NASH mouse model. The beneficial effects of the combined treatment can be attributed to the markedly reduced bile acid pool that reduces liver bile acid burden and intestinal lipid absorption. The aim of this study is to further investigate if combining GSK treatment with the orally bioavailable obeticholic acid (OCA), which induces endogenous FGF15 and inhibits hepatic bile acid synthesis, can achieve similar anti-NASH effect as the GSK+AAV-FGF15 co-treatment in HFCFr-diet-fed mice. Materials and methods: Male C57BL/6J mice were fed HFCFr diet to induce NASH and liver fibrosis. The effect of GSK, OCA, and GSK+OCA treatments on NASH development was compared and contrasted among all groups. Results: Findings from this study showed that the GSK+OCA co-treatment did not cause persistent reduction of obesity over a 12-week treatment period. Neither single treatment nor the GSK+OCA co-treatment reduce hepatic steatosis, but all three treatments reduced hepatic inflammatory cytokines and fibrosis by a similar magnitude. The GSK+OCA co-treatment caused a higher degree of total bile acid pool reduction (~55%) than either GSK or OCA treatment alone. However, such bile acid pool reduction was insufficient to cause increased fecal lipid loss. The GSK+OCA co-treatment prevented GSK-mediated induction of hepatic cholesterol 7alpha-hydroxylase but failed to induce ileal FGF15 expression. GSK did not reduce gallbladder OCA amount in the GSK+OCA group compared to the OCA group, suggesting that ASBT inhibition does not reduce hepatic OCA distribution. Conclusions: Unlike the GSK+AAV-FGF15 co-treatment, the GSK+OCA co-treatment does not provide improved efficacy against NASH and liver fibrosis than either single treatment in mice. The lack of synergistic effect may be partly attributed to the moderate reduction of total bile acid pool and the lack of high level of FGF15 exposure as seen in the GSK+AAV-FGF15 co-treatment.

7.
Micromachines (Basel) ; 12(2)2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33525394

RESUMEN

Laser micromachining technique offers a promising alternative method for rapid production of microfluidic devices. However, the effect of process parameters on the channel geometry and quality of channels on common microfluidic substrates has not been fully understood yet. In this research, we studied the effect of laser system parameters on the microchannel characteristics of Polydimethylsiloxane (PDMS), polymethyl methacrylate (PMMA), and microscope glass substrate-three most widely used materials for microchannels. We also conducted a cell adhesion experiment using normal human dermal fibroblasts on laser-machined microchannels on these substrates. A commercial CO2 laser system consisting of a 45W laser tube, circulating water loop within the laser tube and air cooling of the substrate was used for machining microchannels in PDMS, PMMA and glass. Four laser system parameters - speed, power, focal distance, and number of passes were varied to fabricate straight microchannels. The channel characteristics such as depth, width, and shape were measured using a scanning electron microscope (SEM) and a 3D profilometer. The results show that higher speed produces lower depth while higher laser power produces deeper channels regardless of the substrate materials. Unfocused laser machining produces wider but shallower channels. For the same speed and power, PDMS channels were the widest while PMMA channels were the deepest. Results also showed that the profiles of microchannels can be controlled by increasing the number of passes. With an increased number of passes, both glass and PDMS produced uniform, wider, and more circular channels; in contrast, PMMA channels were sharper at the bottom and skewed. In rapid cell adhesion experiments, PDMS and glass microchannels performed better than PMMA microchannels. This study can serve as a quick reference in material-specific laser-based microchannel fabrications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA