Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Neurol ; 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38852112

RESUMEN

BACKGROUND: Using the Clinical Audit Research and Evaluation of Motor Neuron Disease (CARE-MND) database and the Scottish Regenerative Neurology Tissue Bank, we aimed to outline the genetic epidemiology and phenotypes of an incident cohort of people with MND (pwMND) to gain a realistic impression of the genetic landscape and genotype-phenotype associations. METHODS: Phenotypic markers were identified from the CARE-MND platform. Sequence analysis of 48 genes was undertaken. Variants were classified using a structured evidence-based approach. Samples were also tested for C9orf72 hexanucleotide expansions using repeat-prime PCR methodology. RESULTS: 339 pwMND donated a DNA sample: 44 (13.0%) fulfilled criteria for having a pathogenic variant/repeat expansion, 53.5% of those with a family history of MND and 9.3% of those without. The majority (30 (8.8%)) had a pathogenic C9orf72 repeat expansion, including two with intermediate expansions. Having a C9orf72 expansion was associated with a significantly lower Edinburgh Cognitive and Behavioural ALS Screen ALS-Specific score (p = 0.0005). The known pathogenic SOD1 variant p.(Ile114Thr), frequently observed in the Scottish population, was detected in 9 (2.7%) of total cases but in 17.9% of familial cases. Rare variants were detected in FUS and NEK1. One individual carried both a C9orf72 expansion and SOD1 variant. CONCLUSIONS: Our results provide an accurate summary of MND demographics and genetic epidemiology. We recommend early genetic testing of people with cognitive impairment to ensure that C9orf72 carriers are given the best opportunity for informed treatment planning. Scotland is enriched for the SOD1 p.(Ile114Thr) variant and this has significant implications with regards to future genetically-targeted treatments.

2.
J Neurol ; 270(3): 1702-1712, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36515702

RESUMEN

BACKGROUND: We investigated the phenotypes and genotypes of a cohort of 'long-surviving' individuals with motor neuron disease (MND) to identify potential targets for prognostication. METHODS: Patients were recruited via the Clinical Audit Research and Evaluation for MND (CARE-MND) platform, which hosts the Scottish MND Register. Long survival was defined as > 8 years from diagnosis. 11 phenotypic variables were analysed. Whole genome sequencing (WGS) was performed and variants within 49 MND-associated genes examined. Each individual was screened for C9orf72 repeat expansions. Data from ancestry-matched Scottish populations (the Lothian Birth Cohorts) were used as controls. RESULTS: 58 long survivors were identified. Median survival from diagnosis was 15.5 years. Long survivors were significantly younger at onset and diagnosis than incident patients and had a significantly longer diagnostic delay. 42% had the MND subtype of primary lateral sclerosis (PLS). WGS was performed in 46 individuals: 14 (30.4%) had a potentially pathogenic variant. 4 carried the known SOD1 p.(Ile114Thr) variant. Significant variants in FIG4, hnRNPA2B1, SETX, SQSTM1, TAF15, and VAPB were detected. 2 individuals had a variant in the SPAST gene suggesting phenotypic overlap with hereditary spastic paraplegia (HSP). No long survivors had pathogenic C9orf72 repeat expansions. CONCLUSIONS: Long survivors are characterised by younger age at onset, increased prevalence of PLS and longer diagnostic delay. Genetic analysis in this cohort has improved our understanding of the phenotypes associated with the SOD1 variant p.(Ile114Thr). Our findings confirm that pathogenic expansion of C9orf72 is likely a poor prognostic marker. Genetic screening using targeted MND and/or HSP panels should be considered in those with long survival, or early-onset slowly progressive disease, to improve diagnostic accuracy and aid prognostication.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedad de la Neurona Motora , Paraplejía Espástica Hereditaria , Humanos , Proteína C9orf72/genética , Diagnóstico Tardío , Superóxido Dismutasa-1/genética , Enfermedad de la Neurona Motora/epidemiología , Enfermedad de la Neurona Motora/genética , Genotipo , Fenotipo , Paraplejía Espástica Hereditaria/genética , Esclerosis Amiotrófica Lateral/genética , Espastina/genética , ADN Helicasas/genética , ARN Helicasas/genética , Enzimas Multifuncionales/genética
3.
Brain Commun ; 3(4): fcab255, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35350711

RESUMEN

Oligodendrocytes are implicated in amyotrophic lateral sclerosis pathogenesis and display transactive response DNA-binding protein-43 (TDP-43) pathological inclusions. To investigate the cell autonomous consequences of TDP-43 mutations on human oligodendrocytes, we generated oligodendrocytes from patient-derived induced pluripotent stem cell lines harbouring mutations in the TARDBP gene, namely G298S and M337V. Through a combination of immunocytochemistry, electrophysiological assessment via whole-cell patch clamping, and three-dimensional cultures, no differences in oligodendrocyte differentiation, maturation or myelination were identified. Furthermore, expression analysis for monocarboxylate transporter 1 (a lactate transporter) coupled with a glycolytic stress test showed no deficit in lactate export. However, using confocal microscopy, we report TDP-43 mutation-dependent pathological mis-accumulation of TDP-43. Furthermore, using in vitro patch-clamp recordings, we identified functional Ca2+-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor dysregulation in oligodendrocytes. Together, these findings establish a platform for further interrogation of the role of oligodendrocytes and cellular autonomy in TDP-43 proteinopathy.

4.
J Neurol Neurosurg Psychiatry ; 91(3): 245-253, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31871139

RESUMEN

OBJECTIVE: In this population-based study, we aimed to determine whether neuropsychiatric history, medication or family history of neuropsychiatric disorders predicted cognitive and/or behavioural impairment in motor neuron disease (MND). METHODS: People with MND (pwMND) on the Scottish Clinical, Audit, Research and Evaluation of MND (CARE-MND) register, diagnosed from January 2015 to January 2018, with cognitive and/or behavioural data measured using the Edinburgh Cognitive and Behavioural ALS Screen were included. Data were extracted on patient neuropsychiatric, medication and family history of neuropsychiatric disorders. We identified patients with cognitive impairment (motor neuron disease with cognitive impairment (MNDci)), behavioural impairment (motor neuron disease with behavioural impairment (MNDbi), both (motor neuron disease with cognitive and behavioural impairment (MNDcbi)) or motor neuron disease-frontotemporal dementia (MND-FTD). RESULTS: Data were available for 305 pwMND (mean age at diagnosis=62.26 years, SD=11.40), of which 60 (19.7%) had a neuropsychiatric disorder. A family history of neuropsychiatric disorders was present in 36/231 (15.58%) of patients. Patient premorbid mood disorders were associated with increased apathy (OR=2.78, 95% CI 1.083 to 7.169). A family history of any neuropsychiatric disorder was associated with poorer visuospatial scores, MNDbi (OR=3.14, 95% CI 1.09 to 8.99) and MND-FTD (OR=5.08, 95% CI 1.26 to 20.40). A family history of mood disorders was associated with poorer overall cognition (exp(b)=0.725, p=0.026), language, verbal fluency and visuospatial scores, and MND-FTD (OR=7.57, 95% CI 1.55 to 46.87). A family history of neurotic disorders was associated with poorer language (exp(b)=0.362, p<0.001), visuospatial scores (exp(b)=0.625, p<0.009) and MND-FTD (OR=13.75, 95% CI 1.71 to 110.86). CONCLUSION: Neuropsychiatric disorders in patients and their families are associated with cognitive and behavioural changes post-MND diagnosis, with many occurring independently of MND-FTD and C9orf72 status. These findings support an overlap between MND, frontotemporal dementia and neuropsychiatric disorders, particularly mood disorders.


Asunto(s)
Disfunción Cognitiva/complicaciones , Demencia Frontotemporal/psicología , Trastornos Mentales/complicaciones , Trastornos Mentales/psicología , Enfermedad de la Neurona Motora/psicología , Anciano , Bases de Datos Factuales , Femenino , Demencia Frontotemporal/complicaciones , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de la Neurona Motora/complicaciones , Estudios Retrospectivos , Escocia
5.
Nat Commun ; 9(1): 347, 2018 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-29367641

RESUMEN

Mutations in C9ORF72 are the most common cause of familial amyotrophic lateral sclerosis (ALS). Here, through a combination of RNA-Seq and electrophysiological studies on induced pluripotent stem cell (iPSC)-derived motor neurons (MNs), we show that increased expression of GluA1 AMPA receptor (AMPAR) subunit occurs in MNs with C9ORF72 mutations that leads to increased Ca2+-permeable AMPAR expression and results in enhanced selective MN vulnerability to excitotoxicity. These deficits are not found in iPSC-derived cortical neurons and are abolished by CRISPR/Cas9-mediated correction of the C9ORF72 repeat expansion in MNs. We also demonstrate that MN-specific dysregulation of AMPAR expression is also present in C9ORF72 patient post-mortem material. We therefore present multiple lines of evidence for the specific upregulation of GluA1 subunits in human mutant C9ORF72 MNs that could lead to a potential pathogenic excitotoxic mechanism in ALS.


Asunto(s)
Proteína C9orf72/genética , Neuronas Motoras/patología , Receptores AMPA/metabolismo , Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/metabolismo , Sistemas CRISPR-Cas , Calcio/metabolismo , Expansión de las Repeticiones de ADN , Marcación de Gen , Humanos , Receptores AMPA/genética , Médula Espinal/metabolismo , Médula Espinal/fisiopatología
6.
Acta Neuropathol ; 135(2): 213-226, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29273900

RESUMEN

In addition to motor neurone degeneration, up to 50% of amyotrophic lateral sclerosis (ALS) patients present with cognitive decline. Understanding the neurobiological changes underlying these cognitive deficits is critical, as cognitively impaired patients exhibit a shorter survival time from symptom onset. Given the pathogenic role of synapse loss in other neurodegenerative diseases in which cognitive decline is apparent, such as Alzheimer's disease, we aimed to assess synaptic integrity in the ALS brain. Here, we have applied a unique combination of high-resolution imaging of post-mortem tissue with neuropathology, genetic screening and cognitive profiling of ALS cases. Analyses of more than 1 million synapses using two complimentary high-resolution techniques (electron microscopy and array tomography) revealed a loss of synapses from the prefrontal cortex of ALS patients. Importantly, synapse loss was significantly greater in cognitively impaired cases and was not due to cortical atrophy, nor associated with dementia-associated neuropathology. Interestingly, we found a trend between pTDP-43 pathology and synapse loss in the frontal cortex and discovered pTDP-43 puncta at a subset of synapses in the ALS brains. From these data, we postulate that synapse loss in the prefrontal cortex represents an underlying neurobiological substrate of cognitive decline in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/psicología , Disfunción Cognitiva/patología , Corteza Prefrontal/patología , Sinapsis/patología , Adulto , Anciano , Anciano de 80 o más Años , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Atrofia , Disfunción Cognitiva/etiología , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Estudios de Cohortes , Proteínas de Unión al ADN/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fosforilación , Corteza Prefrontal/metabolismo , Corteza Prefrontal/ultraestructura , Sinapsis/metabolismo , Sinapsis/ultraestructura
8.
Neurobiol Aging ; 51: 178.e11-178.e20, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28089114

RESUMEN

Genetic understanding of motor neuron disease (MND) has evolved greatly in the past 10 years, including the recent identification of association between MND and variants in TBK1 and NEK1. Our aim was to determine the frequency of pathogenic variants in known MND genes and to assess whether variants in TBK1 and NEK1 contribute to the burden of MND in the Scottish population. SOD1, TARDBP, OPTN, TBK1, and NEK1 were sequenced in 441 cases and 400 controls. In addition to 44 cases known to carry a C9orf72 hexanucleotide repeat expansion, we identified 31 cases and 2 controls that carried a loss-of-function or pathogenic variant. Loss-of-function variants were found in TBK1 in 3 cases and no controls and, separately, in NEK1 in 3 cases and no controls. This study provides an accurate description of the genetic epidemiology of MND in Scotland and provides support for the contribution of both TBK1 and NEK1 to MND susceptibility in the Scottish population.


Asunto(s)
Estudios de Asociación Genética , Variación Genética/genética , Enfermedad de la Neurona Motora/epidemiología , Enfermedad de la Neurona Motora/genética , Quinasa 1 Relacionada con NIMA/genética , Proteínas Serina-Treonina Quinasas/genética , Adolescente , Adulto , Edad de Inicio , Anciano , Anciano de 80 o más Años , Femenino , Predisposición Genética a la Enfermedad/genética , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Escocia/epidemiología , Adulto Joven
9.
Mol Cell Probes ; 30(4): 218-224, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27288208

RESUMEN

Due to the GC-rich, repetitive nature of C9orf72 hexanucleotide repeat expansions, PCR based detection methods are challenging. Several limitations of PCR have been reported and overcoming these could help to define the pathogenic range. There is also a need to develop improved repeat-primed PCR assays which allow detection even in the presence of genomic variation around the repeat region. We have optimised PCR conditions for the C9orf72 hexanucleotide repeat expansion, using betaine as a co-solvent and specific cycling conditions, including slow ramping and a high denaturation temperature. We have developed a flanking assay, and repeat-primed PCR assays for both 3' and 5' ends of the repeat expansion, which when used together provide a robust strategy for detecting the presence or absence of expansions greater than ∼100 repeats, even in the presence of genomic variability at the 3' end of the repeat. Using our assays, we have detected repeat expansions in 47/442 Scottish ALS patients. Furthermore, we recommend the combined use of these assays in a clinical diagnostic setting.


Asunto(s)
Expansión de las Repeticiones de ADN/genética , Reacción en Cadena de la Polimerasa/métodos , Proteínas/genética , Alelos , Esclerosis Amiotrófica Lateral/genética , Artefactos , Secuencia de Bases , Proteína C9orf72 , Cartilla de ADN/metabolismo , Humanos , Mosaicismo , Mutación/genética , Escocia , Sensibilidad y Especificidad
10.
Stem Cells ; 34(4): 1040-53, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26763608

RESUMEN

Rodent-based studies have shown that the membrane properties of oligodendrocytes play prominent roles in their physiology and shift markedly during their maturation from the oligodendrocyte precursor cell (OPC) stage. However, the conservation of these properties and maturation processes in human oligodendrocytes remains unknown, despite their dysfunction being implicated in human neurodegenerative diseases such as multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). Here, we have defined the membrane properties of human oligodendrocytes derived from pluripotent stem cells as they mature from the OPC stage, and have identified strong conservation of maturation-specific physiological characteristics reported in rodent systems. We find that as human oligodendrocytes develop and express maturation markers, they exhibit a progressive decrease in voltage-gated sodium and potassium channels and a loss of tetrodotoxin-sensitive spiking activity. Concomitant with this is an increase in inwardly rectifying potassium channel activity, as well as a characteristic switch in AMPA receptor composition. All these steps mirror the developmental trajectory observed in rodent systems. Oligodendrocytes derived from mutant C9ORF72-carryng ALS patient induced pluripotent stem cells did not exhibit impairment to maturation and maintain viability with respect to control lines despite the presence of RNA foci, suggesting that maturation defects may not be a primary feature of this mutation. Thus, we have established that the development of human oligodendroglia membrane properties closely resemble those found in rodent cells and have generated a platform to enable the impact of human neurodegenerative disease-causing mutations on oligodendrocyte maturation to be studied.


Asunto(s)
Esclerosis Amiotrófica Lateral/fisiopatología , Diferenciación Celular/genética , Esclerosis Múltiple/fisiopatología , Oligodendroglía/fisiología , Células Madre Pluripotentes/fisiología , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Fenómenos Electrofisiológicos , Femenino , Humanos , Masculino , Esclerosis Múltiple/genética , Mutación , Neurogénesis/genética , Neurogénesis/fisiología , Oligodendroglía/patología , Células Madre Pluripotentes/patología , Canales de Potasio con Entrada de Voltaje/genética , Canales de Sodio Activados por Voltaje/genética
11.
Nat Commun ; 6: 5999, 2015 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-25580746

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease for which a greater understanding of early disease mechanisms is needed to reveal novel therapeutic targets. We report the use of human induced pluripotent stem cell (iPSC)-derived motoneurons (MNs) to study the pathophysiology of ALS. We demonstrate that MNs derived from iPSCs obtained from healthy individuals or patients harbouring TARDBP or C9ORF72 ALS-causing mutations are able to develop appropriate physiological properties. However, patient iPSC-derived MNs, independent of genotype, display an initial hyperexcitability followed by progressive loss of action potential output and synaptic activity. This loss of functional output reflects a progressive decrease in voltage-activated Na(+) and K(+) currents, which occurs in the absence of overt changes in cell viability. These data implicate early dysfunction or loss of ion channels as a convergent point that may contribute to the initiation of downstream degenerative pathways that ultimately lead to MN loss in ALS.


Asunto(s)
Proteínas de Unión al ADN/genética , Células Madre Pluripotentes Inducidas/metabolismo , Mutación , Sistemas de Lectura Abierta , Proteínas/genética , Potenciales de Acción , Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72 , Línea Celular , Supervivencia Celular , Femenino , Genotipo , Humanos , Masculino , Neuronas Motoras/patología , Técnicas de Placa-Clamp , Potasio/química , Sodio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...