Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Cell Proteomics ; 23(2): 100708, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38154689

RESUMEN

In the era of open-modification search engines, more posttranslational modifications than ever can be detected by LC-MS/MS-based proteomics. This development can switch proteomics research into a higher gear, as PTMs are key in many cellular pathways important in cell proliferation, migration, metastasis, and aging. However, despite these advances in modification identification, statistical methods for PTM-level quantification and differential analysis have yet to catch up. This absence can partly be explained by statistical challenges inherent to the data, such as the confounding of PTM intensities with its parent protein abundance. Therefore, we have developed msqrob2PTM, a new workflow in the msqrob2 universe capable of differential abundance analysis at the PTM and at the peptidoform level. The latter is important for validating PTMs found as significantly differential. Indeed, as our method can deal with multiple PTMs per peptidoform, there is a possibility that significant PTMs stem from one significant peptidoform carrying another PTM, hinting that it might be the other PTM driving the perceived differential abundance. Our workflows can flag both differential peptidoform abundance (DPA) and differential peptidoform usage (DPU). This enables a distinction between direct assessment of differential abundance of peptidoforms (DPA) and differences in the relative usage of peptidoforms corrected for corresponding protein abundances (DPU). For DPA, we directly model the log2-transformed peptidoform intensities, while for DPU, we correct for parent protein abundance by an intermediate normalization step which calculates the log2-ratio of the peptidoform intensities to their summarized parent protein intensities. We demonstrated the utility and performance of msqrob2PTM by applying it to datasets with known ground truth, as well as to biological PTM-rich datasets. Our results show that msqrob2PTM is on par with, or surpassing the performance of, the current state-of-the-art methods. Moreover, msqrob2PTM is currently unique in providing output at the peptidoform level.


Asunto(s)
Proteómica , Espectrometría de Masas en Tándem , Proteómica/métodos , Cromatografía Liquida , Procesamiento Proteico-Postraduccional , Proteínas
2.
J Proteome Res ; 22(2): 350-358, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36648107

RESUMEN

Reliable peptide identification is key in mass spectrometry (MS) based proteomics. To this end, the target decoy approach (TDA) has become the cornerstone for extracting a set of reliable peptide-to-spectrum matches (PSMs) that will be used in downstream analysis. Indeed, TDA is now the default method to estimate the false discovery rate (FDR) for a given set of PSMs, and users typically view it as a universal solution for assessing the FDR in the peptide identification step. However, the TDA also relies on a minimal set of assumptions, which are typically never verified in practice. We argue that a violation of these assumptions can lead to poor FDR control, which can be detrimental to any downstream data analysis. We here therefore first clearly spell out these TDA assumptions, and introduce TargetDecoy, a Bioconductor package with all the necessary functionality to control the TDA quality and its underlying assumptions for a given set of PSMs.


Asunto(s)
Péptidos , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Péptidos/análisis , Proteómica/métodos , Análisis de Datos , Control de Calidad , Bases de Datos de Proteínas , Algoritmos
3.
bioRxiv ; 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38187695

RESUMEN

In single-cell transcriptomics, differential gene expression (DE) analyses typically focus on testing differences in the average expression of genes between cell types or conditions of interest. Single-cell transcriptomics, however, also has the promise to prioritise genes for which the expression differ in other aspects of the distribution. Here we develop a workflow for assessing differential detection (DD), which tests for differences in the average fraction of samples or cells in which a gene is detected. After benchmarking eight different DD data analysis strategies, we provide a unified workflow for jointly assessing DE and DD. Using simulations and two case studies, we show that DE and DD analysis provide complementary information, both in terms of the individual genes they report and in the functional interpretation of those genes.

4.
Sci Data ; 9(1): 626, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36243775

RESUMEN

The holistic nature of omics studies makes them ideally suited to generate hypotheses on health and disease. Sequencing-based genomics and mass spectrometry (MS)-based proteomics are linked through epigenetic regulation mechanisms. However, epigenomics is currently mainly focused on DNA methylation status using sequencing technologies, while studying histone posttranslational modifications (hPTMs) using MS is lagging, partly because reuse of raw data is impractical. Yet, targeting hPTMs using epidrugs is an established promising research avenue in cancer treatment. Therefore, we here present the most comprehensive MS-based preprocessed hPTM atlas to date, including 21 T-cell acute lymphoblastic leukemia (T-ALL) cell lines. We present the data in an intuitive and browsable single licensed Progenesis QIP project and provide all essential quality metrics, allowing users to assess the quality of the data, edit individual peptides, try novel annotation algorithms and export both peptide and protein data for downstream analyses, exemplified by the PeptidoformViz tool. This data resource sets the stage for generalizing MS-based histone analysis and provides the first reusable histone dataset for epidrug development.


Asunto(s)
Histonas , Leucemia , Humanos , Epigénesis Genética , Histonas/metabolismo , Espectrometría de Masas/métodos , Péptidos/química , Procesamiento Proteico-Postraduccional , Linfocitos T/química , Leucemia-Linfoma Linfoblástico de Células T Precursoras
5.
Int J Mol Sci ; 22(3)2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33494376

RESUMEN

As a major group of algae, diatoms are responsible for a substantial part of the primary production on the planet. Pennate diatoms have a predominantly benthic lifestyle and are the most species-rich diatom group, with members of the raphid clades being motile and generally having heterothallic sexual reproduction. It was recently shown that the model species Seminavis robusta uses multiple sexual cues during mating, including cyclo(l-Pro-l-Pro) as an attraction pheromone. Elaboration of the pheromone-detection system is a key aspect in elucidating pennate diatom life-cycle regulation that could yield novel fundamental insights into diatom speciation. This study reports the synthesis and bio-evaluation of seven novel pheromone analogs containing small structural alterations to the cyclo(l-Pro-l-Pro) pheromone. Toxicity, attraction, and interference assays were applied to assess their potential activity as a pheromone. Most of our analogs show a moderate-to-good bioactivity and low-to-no phytotoxicity. The pheromone activity of azide- and diazirine-containing analogs was unaffected and induced a similar mating behavior as the natural pheromone. These results demonstrate that the introduction of confined structural modifications can be used to develop a chemical probe based on the diazirine- and/or azide-containing analogs to study the pheromone-detection system of S. robusta.


Asunto(s)
Diatomeas/metabolismo , Feromonas/metabolismo , Atractivos Sexuales/metabolismo , Vías Biosintéticas , Estructura Molecular , Feromonas/química , Reproducción , Atractivos Sexuales/química
6.
F1000Res ; 10: 374, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-36762203

RESUMEN

Alternative splicing produces multiple functional transcripts from a single gene. Dysregulation of splicing is known to be associated with disease and as a hallmark of cancer. Existing tools for differential transcript usage (DTU) analysis either lack in performance, cannot account for complex experimental designs or do not scale to massive single-cell transcriptome sequencing (scRNA-seq) datasets. We introduce satuRn, a fast and flexible quasi-binomial generalized linear modelling framework that is on par with the best performing DTU methods from the bulk RNA-seq realm, while providing good false discovery rate control, addressing complex experimental designs, and scaling to scRNA-seq applications.

7.
ISME J ; 15(2): 562-576, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33028976

RESUMEN

Sexual reproduction is a fundamental phase in the life cycle of most diatoms. Despite its role as a source of genetic variation, it is rarely reported in natural circumstances and its molecular foundations remain largely unknown. Here, we integrate independent transcriptomic datasets to prioritize genes responding to sex inducing pheromones (SIPs) in the pennate diatom Seminavis robusta. We observe marked gene expression changes associated with SIP treatment in both mating types, including an inhibition of S phase progression, chloroplast division, mitosis, and cell wall formation. Meanwhile, meiotic genes are upregulated in response to SIP, including a sexually induced diatom specific cyclin. Our data further suggest an important role for reactive oxygen species, energy metabolism, and cGMP signaling during the early stages of sexual reproduction. In addition, we identify several genes with a mating type specific response to SIP, and link their expression pattern with physiological specialization, such as the production of the attraction pheromone diproline in mating type - (MT-) and mate-searching behavior in mating type + (MT+). Combined, our results provide a model for early sexual reproduction in pennate diatoms and significantly expand the suite of target genes to detect sexual reproduction events in natural diatom populations.


Asunto(s)
Diatomeas , Atractivos Sexuales , Diatomeas/genética , Feromonas , Reproducción , Transcriptoma
8.
BMC Genomics ; 21(1): 733, 2020 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-33092529

RESUMEN

BACKGROUND: Microorganisms are not only indispensable to ecosystem functioning, they are also keystones for emerging technologies. In the last 15 years, the number of studies on environmental microbial communities has increased exponentially due to advances in sequencing technologies, but the large amount of data generated remains difficult to analyze and interpret. Recently, metabarcoding analysis has shifted from clustering reads using Operational Taxonomical Units (OTUs) to Amplicon Sequence Variants (ASVs). Differences between these methods can seriously affect the biological interpretation of metabarcoding data, especially in ecosystems with high microbial diversity, as the methods are benchmarked based on low diversity datasets. RESULTS: In this work we have thoroughly examined the differences in community diversity, structure, and complexity between the OTU and ASV methods. We have examined culture-based mock and simulated datasets as well as soil- and plant-associated bacterial and fungal environmental communities. Four key findings were revealed. First, analysis of microbial datasets at family level guaranteed both consistency and adequate coverage when using either method. Second, the performance of both methods used are related to community diversity and sample sequencing depth. Third, differences in the method used affected sample diversity and number of detected differentially abundant families upon treatment; this may lead researchers to draw different biological conclusions. Fourth, the observed differences can mostly be attributed to low abundant (relative abundance < 0.1%) families, thus extra care is recommended when studying rare species using metabarcoding. The ASV method used outperformed the adopted OTU method concerning community diversity, especially for fungus-related sequences, but only when the sequencing depth was sufficient to capture the community complexity. CONCLUSIONS: Investigation of metabarcoding data should be done with care. Correct biological interpretation depends on several factors, including in-depth sequencing of the samples, choice of the most appropriate filtering strategy for the specific research goal, and use of family level for data clustering.


Asunto(s)
Microbiota , Suelo , Bacterias/genética , Hongos/genética , Humanos , Microbiota/genética , Microbiología del Suelo
9.
Mol Cell Proteomics ; 19(7): 1209-1219, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32321741

RESUMEN

Label-Free Quantitative mass spectrometry based workflows for differential expression (DE) analysis of proteins impose important challenges on the data analysis because of peptide-specific effects and context dependent missingness of peptide intensities. Peptide-based workflows, like MSqRob, test for DE directly from peptide intensities and outperform summarization methods which first aggregate MS1 peptide intensities to protein intensities before DE analysis. However, these methods are computationally expensive, often hard to understand for the non-specialized end-user, and do not provide protein summaries, which are important for visualization or downstream processing. In this work, we therefore evaluate state-of-the-art summarization strategies using a benchmark spike-in dataset and discuss why and when these fail compared with the state-of-the-art peptide based model, MSqRob. Based on this evaluation, we propose a novel summarization strategy, MSqRobSum, which estimates MSqRob's model parameters in a two-stage procedure circumventing the drawbacks of peptide-based workflows. MSqRobSum maintains MSqRob's superior performance, while providing useful protein expression summaries for plotting and downstream analysis. Summarizing peptide to protein intensities considerably reduces the computational complexity, the memory footprint and the model complexity, and makes it easier to disseminate DE inferred on protein summaries. Moreover, MSqRobSum provides a highly modular analysis framework, which provides researchers with full flexibility to develop data analysis workflows tailored toward their specific applications.


Asunto(s)
Espectrometría de Masas/métodos , Péptidos/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Cromatografía Liquida , Bases de Datos de Proteínas , Humanos , Programas Informáticos
10.
Anal Chem ; 92(9): 6278-6287, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32227882

RESUMEN

Missing values are a major issue in quantitative data-dependent mass spectrometry-based proteomics. We therefore present an innovative solution to this key issue by introducing a hurdle model, which is a mixture between a binomial peptide count and a peptide intensity-based model component. It enables dramatically enhanced quantification of proteins with many missing values without having to resort to harmful assumptions for missingness. We demonstrate the superior performance of our method by comparing it with state-of-the-art methods in the field.


Asunto(s)
Proteómica/métodos , Proyectos de Investigación , Cromatografía Líquida de Alta Presión , Espectrometría de Masas , Modelos Teóricos , Péptidos/análisis , Proteoma/análisis
11.
Nat Commun ; 11(1): 1201, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32139671

RESUMEN

Trajectory inference has radically enhanced single-cell RNA-seq research by enabling the study of dynamic changes in gene expression. Downstream of trajectory inference, it is vital to discover genes that are (i) associated with the lineages in the trajectory, or (ii) differentially expressed between lineages, to illuminate the underlying biological processes. Current data analysis procedures, however, either fail to exploit the continuous resolution provided by trajectory inference, or fail to pinpoint the exact types of differential expression. We introduce tradeSeq, a powerful generalized additive model framework based on the negative binomial distribution that allows flexible inference of both within-lineage and between-lineage differential expression. By incorporating observation-level weights, the model additionally allows to account for zero inflation. We evaluate the method on simulated datasets and on real datasets from droplet-based and full-length protocols, and show that it yields biological insights through a clear interpretation of the data.


Asunto(s)
Perfilación de la Expresión Génica , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Animales , Médula Ósea/metabolismo , Simulación por Computador , Bases de Datos Genéticas , Regulación de la Expresión Génica , Ratones , Modelos Estadísticos , Mucosa Olfatoria/metabolismo , Análisis de Componente Principal
12.
J Proteome Res ; 17(6): 2182-2191, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29733654

RESUMEN

A20 is a negative regulator of NF-κB signaling; it controls inflammatory responses and ensures tissue homeostasis. A20 is thought to restrict NF-κB activation both by its ubiquitin-editing activity as well as by its nonenzymatic activities. Besides its role in NF-κB signaling, A20 also acts as a protective factor inhibiting apoptosis and necroptosis. Because of the ability of A20 to both ubiquitinate and deubiquitinate substrates, and its involvement in many cellular processes, we hypothesized that deletion of A20 might generally impact on protein levels, thereby disrupting cellular signaling. We performed a differential proteomics study on bone marrow-derived macrophages (BMDMs) from control and myeloid-specific A20 knockout mice, both in untreated conditions and after LPS or TNF treatment, and demonstrated A20-dependent changes in protein expression. Several inflammatory proteins were found up-regulated in the absence of A20, even without an inflammatory stimulus, but, depending on the treatment and the treatment time, more proteins were found regulated. Together these protein changes may affect normal signaling events, which may disturb tissue homeostasis and induce (autoimmune) inflammation, in agreement with A20s proposed identity as a susceptibility gene for inflammatory disease. We further verify that immune-responsive gene 1 (IRG1) is up-regulated in the absence of A20 and that its levels are transcriptionally regulated.


Asunto(s)
Hidroliasas/metabolismo , Proteómica/métodos , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/deficiencia , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Hidroliasas/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Ratones , Ratones Noqueados , Transcripción Genética , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/fisiología , Factor de Necrosis Tumoral alfa/farmacología , Regulación hacia Arriba
13.
Front Neurosci ; 12: 136, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29593484

RESUMEN

The detection of external and internal cues alters gene expression in the brain which in turn may affect neural networks that underly behavioral responses. Previous studies have shown that gene expression profiles differ between major brain regions within individuals and between species with different morphologies, cognitive abilities and/or behaviors. A detailed description of gene expression in all macroanatomical brain regions and in species with similar morphologies and behaviors is however lacking. Here, we dissected the brain of two cichlid species into six macroanatomical regions. Ophthalmotilapia nasuta and O. ventralis have similar morphology and behavior and occasionally hybridize in the wild. We use 3' mRNA sequencing and a stage-wise statistical testing procedure to identify differential gene expression between females that were kept in a social setting with other females. Our results show that gene expression differs substantially between all six brain parts within species: out of 11,577 assessed genes, 8,748 are differentially expressed (DE) in at least one brain part compared to the average expression of the other brain parts. At most 16% of these DE genes have |log2FC| significantly higher than two. Functional differences between brain parts were consistent between species. The majority (61-79%) of genes that are DE in a particular brain part were shared between both species. Only 32 genes show significant differences in fold change across brain parts between species. These genes are mainly linked to transport, transmembrane transport, transcription (and its regulation) and signal transduction. Moreover, statistical equivalence testing reveals that within each comparison, on average 89% of the genes show an equivalent fold change between both species. The pronounced differences in gene expression between brain parts and the conserved patterns between closely related species with similar morphologies and behavior suggest that unraveling the interactions between genes and behavior will benefit from neurogenomic profiling of distinct brain regions.

14.
Genome Biol ; 19(1): 24, 2018 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-29478411

RESUMEN

Dropout events in single-cell RNA sequencing (scRNA-seq) cause many transcripts to go undetected and induce an excess of zero read counts, leading to power issues in differential expression (DE) analysis. This has triggered the development of bespoke scRNA-seq DE methods to cope with zero inflation. Recent evaluations, however, have shown that dedicated scRNA-seq tools provide no advantage compared to traditional bulk RNA-seq tools. We introduce a weighting strategy, based on a zero-inflated negative binomial model, that identifies excess zero counts and generates gene- and cell-specific weights to unlock bulk RNA-seq DE pipelines for zero-inflated data, boosting performance for scRNA-seq.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual , Programas Informáticos
15.
J Proteomics ; 171: 23-36, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-28391044

RESUMEN

Label-free shotgun proteomics is routinely used to assess proteomes. However, extracting relevant information from the massive amounts of generated data remains difficult. This tutorial provides a strong foundation on analysis of quantitative proteomics data. We provide key statistical concepts that help researchers to design proteomics experiments and we showcase how to analyze quantitative proteomics data using our recent free and open-source R package MSqRob, which was developed to implement the peptide-level robust ridge regression method for relative protein quantification described by Goeminne et al. MSqRob can handle virtually any experimental proteomics design and outputs proteins ordered by statistical significance. Moreover, its graphical user interface and interactive diagnostic plots provide easy inspection and also detection of anomalies in the data and flaws in the data analysis, allowing deeper assessment of the validity of results and a critical review of the experimental design. Our tutorial discusses interactive preprocessing, data analysis and visualization of label-free MS-based quantitative proteomics experiments with simple and more complex designs. We provide well-documented scripts to run analyses in bash mode on GitHub, enabling the integration of MSqRob in automated pipelines on cluster environments (https://github.com/statOmics/MSqRob). SIGNIFICANCE: The concepts outlined in this tutorial aid in designing better experiments and analyzing the resulting data more appropriately. The two case studies using the MSqRob graphical user interface will contribute to a wider adaptation of advanced peptide-based models, resulting in higher quality data analysis workflows and more reproducible results in the proteomics community. We also provide well-documented scripts for experienced users that aim at automating MSqRob on cluster environments.


Asunto(s)
Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Proteínas/análisis , Proteoma/análisis , Proteómica/métodos , Programas Informáticos , Proteínas Bacterianas/análisis , Biología Computacional , Francisella tularensis/química , Humanos , Péptidos/análisis
16.
BMC Bioinformatics ; 18(1): 535, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29191167

RESUMEN

BACKGROUND: In the search for novel causal mutations, public and/or private variant databases are nearly always used to facilitate the search as they result in a massive reduction of putative variants in one step. Practically, variant filtering is often done by either using all variants from the variant database (called the absence-approach, i.e. it is assumed that disease-causing variants do not reside in variant databases) or by using the subset of variants with an allelic frequency > 1% (called the 1%-approach). We investigate the validity of these two approaches in terms of false negatives (the true disease-causing variant does not pass all filters) and false positives (a harmless mutation passes all filters and is erroneously retained in the list of putative disease-causing variants) and compare it with an novel approach which we named the quantile-based approach. This approach applies variable instead of static frequency thresholds and the calculation of these thresholds is based on prior knowledge of disease prevalence, inheritance models, database size and database characteristics. RESULTS: Based on real-life data, we demonstrate that the quantile-based approach outperforms the absence-approach in terms of false negatives. At the same time, this quantile-based approach deals more appropriately with the variable allele frequencies of disease-causing alleles in variant databases relative to the 1%-approach and as such allows a better control of the number of false positives. We also introduce an alternative application for variant database usage and the quantile-based approach. If disease-causing variants in variant databases deviate substantially from theoretical expectancies calculated with the quantile-based approach, their association between genotype and phenotype had to be reconsidered in 12 out of 13 cases. CONCLUSIONS: We developed a novel method and demonstrated that this so-called quantile-based approach is a highly suitable method for variant filtering. In addition, the quantile-based approach can also be used for variant flagging. For user friendliness, lookup tables and easy-to-use R calculators are provided.


Asunto(s)
Bases de Datos Genéticas , Estudios de Asociación Genética , Alelos , Anomalías Congénitas/genética , Anomalías Congénitas/patología , Frecuencia de los Genes , Genotipo , Humanos , Fenotipo , Polimorfismo de Nucleótido Simple
17.
PLoS One ; 12(8): e0182832, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28817597

RESUMEN

Reverse transcription quantitative polymerase chain reaction (RT-qPCR) is considered as the gold standard for accurate, sensitive, and fast measurement of gene expression. Prior to downstream statistical analysis, RT-qPCR fluorescence amplification curves are summarized into one single value, the quantification cycle (Cq). When RT-qPCR does not reach the limit of detection, the Cq is labeled as "undetermined". Current state of the art qPCR data analysis pipelines acknowledge the importance of normalization for removing non-biological sample to sample variation in the Cq values. However, their strategies for handling undetermined Cq values are very ad hoc. We show that popular methods for handling undetermined values can have a severe impact on the downstream differential expression analysis. They introduce a considerable bias and suffer from a lower precision. We propose a novel method that unites preprocessing and differential expression analysis in a single statistical model that provides a rigorous way for handling undetermined Cq values. We compare our method with existing approaches in a simulation study and on published microRNA and mRNA gene expression datasets. We show that our method outperforms traditional RT-qPCR differential expression analysis pipelines in the presence of undetermined values, both in terms of accuracy and precision.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Técnicas de Diagnóstico Molecular/métodos , Neuroblastoma/genética , Reacción en Cadena de la Polimerasa/métodos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Niño , Preescolar , Perfilación de la Expresión Génica/normas , Humanos , MicroARNs/genética , Técnicas de Diagnóstico Molecular/normas , Proteína Proto-Oncogénica N-Myc/genética , Proteína Proto-Oncogénica N-Myc/metabolismo , Neuroblastoma/diagnóstico , Neuroblastoma/metabolismo , Reacción en Cadena de la Polimerasa/normas , Estándares de Referencia , Sensibilidad y Especificidad
18.
Genome Biol ; 18(1): 151, 2017 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-28784146

RESUMEN

RNA sequencing studies with complex designs and transcript-resolution analyses involve multiple hypotheses per gene; however, conventional approaches fail to control the false discovery rate (FDR) at gene level. We propose stageR, a two-stage testing paradigm that leverages the increased power of aggregated gene-level tests and allows post hoc assessment for significant genes. This method provides gene-level FDR control and boosts power for testing interaction effects. In transcript-level analysis, it provides a framework that performs powerful gene-level tests while maintaining biological interpretation at transcript-level resolution. The procedure is applicable whenever individual hypotheses can be aggregated, providing a unified framework for complex high-throughput experiments.


Asunto(s)
Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Estudios de Asociación Genética/métodos , Algoritmos , Animales , Simulación por Computador , Regulación de la Expresión Génica , Humanos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
20.
Anal Chem ; 89(8): 4461-4467, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28350455

RESUMEN

Standard data analysis pipelines for digital PCR estimate the concentration of a target nucleic acid by digitizing the end-point fluorescence of the parallel micro-PCR reactions, using an automated hard threshold. While it is known that misclassification has a major impact on the concentration estimate and substantially reduces accuracy, the uncertainty of this classification is typically ignored. We introduce a model-based clustering method to estimate the probability that the target is present (absent) in a partition conditional on its observed fluorescence and the distributional shape in no-template control samples. This methodology acknowledges the inherent uncertainty of the classification and provides a natural measure of precision, both at individual partition level and at the level of the global concentration. We illustrate our method on genetically modified organism, inhibition, dynamic range, and mutation detection experiments. We show that our method provides concentration estimates of similar accuracy or better than the current standard, along with a more realistic measure of precision. The individual partition probabilities and diagnostic density plots further allow for some quality control. An R implementation of our method, called Umbrella, is available, providing a more objective and automated data analysis procedure for absolute dPCR quantification.


Asunto(s)
Modelos Teóricos , Reacción en Cadena de la Polimerasa/métodos , ADN de Plantas/análisis , ADN de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Reacción en Cadena de la Polimerasa/normas , Control de Calidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...