Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Mitochondrion ; 13(6): 835-40, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23751425

RESUMEN

Diabetes mellitus (DM) is associated with increased production of reactive oxygen and nitrogen species; consequently, an increase in lipid peroxidation and a decrease in antioxidants resulting in mitochondrial dysfunction. Using a rat model of DM induced by streptozotocin, we show the opposite: an increase in NO levels, S-nitrosylation, aconitase activity, and total glutathione and a decrease in lipid peroxidation at early stages of diabetes. These data imply that the decrease in lipid peroxidation is a vital early response to hyperglycemia to prevent escalation of ROS generation in mitochondria. These results also suggest a need for novel therapeutic targets to prevent the neurological consequences of diabetes.


Asunto(s)
Diabetes Mellitus Experimental/fisiopatología , Mitocondrias/fisiología , Nitrosación , Estrés Oxidativo , Animales , Citrulina/biosíntesis , Diabetes Mellitus Experimental/metabolismo , Glutatión/metabolismo , Peroxidación de Lípido , Masculino , Mitocondrias/metabolismo , Ratas , Ratas Wistar , Estreptozocina
2.
World J Microbiol Biotechnol ; 29(7): 1279-87, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23417282

RESUMEN

During the mezcal fermentation process, yeasts are affected by several stresses that can affect their fermentation capability. These stresses, such as thermal shock, ethanol, osmotic and growth inhibitors are common during fermentation. Cells have improved metabolic systems and they express stress response genes in order to decrease the damage caused during the stress, but to the best of our knowledge, there are no published works exploring the effect of oxidants and prooxidants, such as H2O2 and menadione, during growth. In this article, we describe the behavior of Kluyveromyces marxianus isolated from spontaneous mezcal fermentation during oxidative stress, and compared it with that of Saccharomyces cerevisiae strains that were also obtained from mezcal, using the W303-1A strain as a reference. S. cerevisiae strains showed greater viability after oxidative stress compared with K. marxianus strains. However, when the yeast strains were grown in the presence of oxidants in the media, K. marxianus exhibited a greater ability to grow in menadione than it did in H2O2. Moreover, when K. marxianus SLP1 was grown in a minibioreactor, its behavior when exposed to menadione was different from its behavior with H2O2. The yeast maintained the ability to consume dissolved oxygen during the 4 h subsequent to the addition of menadione, and then stopped respiration. When exposed to H2O2, the yeast stopped consuming oxygen for the following 8 h, but began to consume oxygen when stressors were no longer applied. In conclusion, yeast isolated from spontaneous mezcal fermentation was able to resist oxidative stress for a long period of time.


Asunto(s)
Microbiología de Alimentos , Kluyveromyces/efectos de los fármacos , Kluyveromyces/metabolismo , Estrés Oxidativo , Reactores Biológicos/microbiología , Medios de Cultivo/química , Peróxido de Hidrógeno/toxicidad , Kluyveromyces/aislamiento & purificación , Viabilidad Microbiana/efectos de los fármacos , Oxidantes/toxicidad , Oxidación-Reducción , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/aislamiento & purificación , Saccharomyces cerevisiae/metabolismo , Vitamina K 3/toxicidad
3.
Biochem Res Int ; 2012: 603501, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22162811

RESUMEN

Diabetes mellitus (DM) is a significant risk factor for the development of cardiovascular complications. This study was undertaken to investigate the effect of chronic administration of ethanolic extract of Eryngium carlinae on glucose, creatinine, uric acid, total cholesterol, and triglycerides levels in serum of streptozotocin- (STZ-) induced diabetic rats. Triglycerides, total cholesterol, and uric acid levels increased in serum from diabetic rats. The treatment with E. carlinae prevented these changes. The administration of E. carlinae extract reduced the levels of creatinine, uric acid, total cholesterol, and triglycerides. Thus administration of E. carlinae is able to reduce hyperlipidemia related to the cardiovascular risk in diabetes mellitus.

4.
J Bioenerg Biomembr ; 43(2): 101-7, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21448653

RESUMEN

Trans-resveratrol is a nutraceutical with known antioxidant, anti-inflammatory, cardioprotective, and anti-apoptotic properties. The aim of this study was to evaluate the effects of resveratrol on heart mitochondria. Resveratrol significantly decreased Fe(2+) + ascorbate oxidant system-induced lipid peroxide levels, preserved physiological levels of glutathione, and increased nitric oxide (NO) levels in mitochondria. Under calcium-mediated stress, there was a 2.7-fold increase in the NO levels, and a mild decoupling in the mitochondrial respiratory chain. These results provide a mechanism for and support the beneficial effects of resveratrol under pathological conditions induced by oxidative stress and calcium overload. In addition, these findings underscore the usefulness of resveratrol in the prevention of cardiovascular diseases.


Asunto(s)
Antioxidantes/farmacología , Calcio/farmacología , Mitocondrias Cardíacas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Estilbenos/farmacología , Animales , Ácido Ascórbico/metabolismo , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Enfermedades Cardiovasculares/prevención & control , Glutatión/metabolismo , Hierro/metabolismo , Masculino , Óxido Nítrico/metabolismo , Ratas , Ratas Wistar , Resveratrol
5.
J Bioenerg Biomembr ; 43(2): 135-47, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21350953

RESUMEN

The mitochondrial electron transport chain (ETC) contains thiol groups (-SH) which are reversibly oxidized to modulate ETC function during H(2)O(2) overproduction. Since deleterious effects of H(2)O(2) are not limited to -SH oxidation, due to the formation of other H(2)O(2)-derived species, some processes like lipoperoxidation could enhance the effects of H(2)O(2) over ETC enzymes, disrupt their modulation by -SH oxidation and increase superoxide production. To verify this hypothesis, we tested the effects of H(2)O(2) on ETC activities, superoxide production and iron mobilization in mitochondria from lipoperoxidation-resistant native yeast and lipoperoxidation-sensitized yeast. Only complex III activity from lipoperoxidation-sensitive mitochondria exhibited a higher susceptibility to H(2)O(2) and increased superoxide production. The recovery of ETC activity by the thiol reductanct ß-mercaptoethanol (BME) was also altered at complex III, and a role was attributed to lipoperoxidation, the latter being also responsible for iron release. A hypothetical model linking lipoperoxidation, increased complex III damage, superoxide production and iron release is given.


Asunto(s)
Peróxido de Hidrógeno/farmacología , Hierro/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Mitocondrias/enzimología , Oxidantes/farmacología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Superóxidos/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón , Peroxidación de Lípido/genética , Mitocondrias/genética , Modelos Biológicos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
6.
J Bioenerg Biomembr ; 41(1): 15-28, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19224349

RESUMEN

Lipoperoxidative damage to the respiratory chain proteins may account for disruption in mitochondrial electron transport chain (ETC) function and could lead to an augment in the production of reactive oxygen species (ROS). To test this hypothesis, we investigated the effects of lipoperoxidation on ETC function and cytochromes spectra of Saccharomyces cerevisiae mitochondria. We compared the effects of Fe(2+) treatment on mitochondria isolated from yeast with native (lipoperoxidation-resistant) and modified (lipoperoxidation-sensitive) fatty acid composition. Augmented sensitivity to oxidative stress was observed in the complex III-complex IV segment of the ETC. Lipoperoxidation did not alter the cytochromes content. Under lipoperoxidative conditions, cytochrome c reduction by succinate was almost totally eliminated by superoxide dismutase and stigmatellin. Our results suggest that lipoperoxidation impairs electron transfer mainly at cytochrome b in complex III, which leads to increased resistance to antimycin A and ROS generation due to an electron leak at the level of the Q(O) site of complex III.


Asunto(s)
Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Ácidos Grasos/metabolismo , Peroxidación de Lípido/fisiología , Mitocondrias/metabolismo , Saccharomyces cerevisiae/metabolismo , Hierro/metabolismo , Mitocondrias/química , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/fisiología
7.
Free Radic Res ; 41(11): 1212-23, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17907001

RESUMEN

The deleterious effects of H202 on the electron transport chain of yeast mitochondria and on mitochondrial lipid peroxidation were evaluated. Exposure to H2O2 resulted in inhibition of the oxygen consumption in the uncoupled and phosphorylating states to 69% and 65%, respectively. The effect of H2O2 on the respiratory rate was associated with an inhibition of succinate-ubiquinone and succinate-DCIP oxidoreductase activities. Inhibitory effect of H2O2 on respiratory complexes was almost completely recovered by beta-mercaptoethanol treatment. H2O2 treatment resulted in full resistance to Qo site inhibitor myxothiazol and thus it is suggested that the quinol oxidase site (Qo) of complex III is the target for H2O2. H2O2 did not modify basal levels of lipid peroxidation in yeast mitochondria. However, H2O2 addition to rat brain and liver mitochondria induced an increase in lipid peroxidation. These results are discussed in terms of the known physiological differences between mammalian and yeast mitochondria.


Asunto(s)
Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Peróxido de Hidrógeno/farmacología , Peroxidación de Lípido/fisiología , Mitocondrias/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Succinato Citocromo c Oxidorreductasa/fisiología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Transporte de Electrón/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Ratas , Saccharomyces cerevisiae/efectos de los fármacos , Succinato Citocromo c Oxidorreductasa/metabolismo
8.
Mitochondrion ; 1(5): 413-23, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-16120294

RESUMEN

Nitric oxide (NO) is an important reactive molecule in many organisms. A mitochondrial nitric oxide synthase has been described; however, the role of NO in this organelle is not yet fully clear. We tested the effect of intramitochondrial NO on various functions from spontaneously hypertensive rats (SHR) and their normotensive genetic control, Wistar-Kyoto (WKY) rats. While the stimulation of intramitochondrial NOS increased calcium- and phosphate-induced permeability transition pore opening, its inhibition partially prevented it, without affecting membrane potential. Matrix free calcium and the pH decreased with NOS inhibition. Basal [NO] was lower in SHR than in WKY. Our data suggest that intramitochondrial NO plays an important role in mitochondrial regulation during hypertension.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...