Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Mol Neurosci ; 17: 1359154, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638602

RESUMEN

A large number of synaptic proteins have been recurrently associated with complex brain disorders. One of these proteins, the Traf and Nck interacting kinase (TNIK), is a postsynaptic density (PSD) signaling hub, with many variants reported in neurodevelopmental disorder (NDD) and psychiatric disease. While rodent models of TNIK dysfunction have abnormal spontaneous synaptic activity and cognitive impairment, the role of mutations found in patients with TNIK protein deficiency and TNIK protein kinase activity during early stages of neuronal and synapse development has not been characterized. Here, using hiPSC-derived excitatory neurons, we show that TNIK mutations dysregulate neuronal activity in human immature synapses. Moreover, the lack of TNIK protein kinase activity impairs MAPK signaling and protein phosphorylation in structural components of the PSD. We show that the TNIK interactome is enriched in NDD risk factors and TNIK lack of function disrupts signaling networks and protein interactors associated with NDD that only partially overlap to mature mouse synapses, suggesting a differential role of TNIK in immature synapsis in NDD.

2.
Nat Neurosci ; 20(8): 1150-1161, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28671696

RESUMEN

The postsynaptic density (PSD) contains a collection of scaffold proteins used for assembling synaptic signaling complexes. However, it is not known how the core-scaffold machinery associates in protein-interaction networks or how proteins encoded by genes involved in complex brain disorders are distributed through spatiotemporal protein complexes. Here using immunopurification, proteomics and bioinformatics, we isolated 2,876 proteins across 41 in vivo interactomes and determined their protein domain composition, correlation to gene expression levels and developmental integration to the PSD. We defined clusters for enrichment of schizophrenia, autism spectrum disorders, developmental delay and intellectual disability risk factors at embryonic day 14 and adult PSD in mice. Mutations in highly connected nodes alter protein-protein interactions modulating macromolecular complexes enriched in disease risk candidates. These results were integrated into a software platform, Synaptic Protein/Pathways Resource (SyPPRes), enabling the prioritization of disease risk factors and their placement within synaptic protein interaction networks.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/genética , Densidad Postsináptica/genética , Sinapsis/metabolismo , Animales , Encefalopatías/genética , Encefalopatías/metabolismo , Modelos Animales de Enfermedad , Guanilato-Quinasas/genética , Proteínas de la Membrana/genética , Ratones Transgénicos , Esquizofrenia/genética , Esquizofrenia/metabolismo , Transducción de Señal/genética , Sinapsis/genética
3.
Sci Signal ; 9(440): rs8, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27507650

RESUMEN

The postsynaptic site of neurons is composed of more than 1500 proteins arranged in protein-protein interaction complexes, the composition of which is modulated by protein phosphorylation through the actions of complex signaling networks. Components of these networks function as key regulators of synaptic plasticity, in particular hippocampal long-term potentiation (LTP). The postsynaptic density (PSD) is a complex multicomponent structure that includes receptors, enzymes, scaffold proteins, and structural proteins. We triggered LTP in the mouse hippocampus CA1 region and then performed large-scale analyses to identify phosphorylation-mediated events in the PSD and changes in the protein-protein interactome of the PSD that were associated with LTP induction. Our data indicated LTP-induced reorganization of the PSD. The dynamic reorganization of the PSD links glutamate receptor signaling to kinases (writers) and phosphatases (erasers), as well as the target proteins that are modulated by protein phosphorylation and the proteins that recognize the phosphorylation status of their binding partners (readers). Protein phosphorylation and protein interaction networks converged at highly connected nodes within the PSD network. Furthermore, the LTP-regulated phosphoproteins, which included the scaffold proteins Shank3, Syngap1, Dlgap1, and Dlg4, represented the "PSD risk" for schizophrenia and autism spectrum disorder, such that without these proteins in the analysis, the association with the PSD and these two psychiatric diseases was not present. These data are a rich resource for future studies of LTP and suggest that the PSD holds the keys to understanding the molecular events that contribute to complex neurological disorders that affect synaptic plasticity.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Potenciación a Largo Plazo/fisiología , Fosfoproteínas Fosfatasas/metabolismo , Fosfoproteínas/metabolismo , Proteínas Quinasas/metabolismo , Transducción de Señal/fisiología , Sinapsis/metabolismo , Animales , Ratones , Fosforilación/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...