Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ann Vasc Surg ; 108: 1-9, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38838987

RESUMEN

BACKGROUND: This study's objective is to describe outcomes of adult patients who underwent thoracic stent graft placement treatment for primary or recurrent aortic coarctation. METHODS: This is a retrospective study of 30 adult patients who underwent thoracic stent graft placement for aortic coarctation at our institution. Average age was 46.5 years, with 53.3% of patients presented with no prior treatment or repair for coarctation. Indications for repair included gradient ≥20 mm Hg with anatomic evidence of coarctation on imaging with left ventricular hypertrophy, pseudoaneurysm, aneurysm, refractory hypertension, or claudication. Stent grafts used for repair included MDT (Medtronic, Santa Rosa, CA) and GORE TAG (W. L. Gore & Associates, Flagstaff, AZ). RESULTS: Patients were observed for a median of 979 days, with one death during the study. All patients had complete resolution of symptoms with no recurrences. Thoracic endovascular aortic repair significantly reduced the gradient across the coarctation (P < 0.0001). Aortic coarctation diameter significantly increased at 30 days postoperatively and continued to increase up to 5 years posttreatment. At 3+ years, aortic remodeling was observed at the coarctation site and surrounding regions. At 30 days, systolic, diastolic, and mean arterial pressure were all reduced. Systolic and diastolic blood pressure and mean arterial pressure continued to significantly improve 1-year posttreatment. CONCLUSIONS: Stent grafts are a safe and effective treatment for aortic coarctation. We observed a clinically significant improvement in blood pressure and longitudinal aortic remodeling of the coarctation segment and the entire aorta that persisted more than more than 3 years.


Asunto(s)
Aorta Torácica , Coartación Aórtica , Implantación de Prótesis Vascular , Prótesis Vascular , Procedimientos Endovasculares , Diseño de Prótesis , Stents , Remodelación Vascular , Humanos , Coartación Aórtica/cirugía , Coartación Aórtica/fisiopatología , Coartación Aórtica/diagnóstico por imagen , Coartación Aórtica/complicaciones , Estudios Retrospectivos , Masculino , Femenino , Persona de Mediana Edad , Resultado del Tratamiento , Adulto , Procedimientos Endovasculares/instrumentación , Procedimientos Endovasculares/efectos adversos , Implantación de Prótesis Vascular/instrumentación , Implantación de Prótesis Vascular/efectos adversos , Factores de Tiempo , Aorta Torácica/cirugía , Aorta Torácica/fisiopatología , Aorta Torácica/diagnóstico por imagen , Recurrencia , Anciano , Adulto Joven
3.
J Cereb Blood Flow Metab ; 44(7): 1145-1162, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38235747

RESUMEN

Cardiopulmonary arrest (CA) is a major cause of death/disability in the U.S. with poor prognosis and survival rates. Current therapeutic challenges are physiologically complex because they involve hypoperfusion (decreased cerebral blood flow), neuroinflammation, and mitochondrial dysfunction. We previously discovered novel serum/glucocorticoid-regulated kinase 1 (SGK1) is highly expressed in brain of neurons that are susceptible to ischemia (hippocampus and cortex). We inhibited SGK1 and utilized pharmacological (specific inhibitor, GSK650394) and neuron-specific genetic approaches (shRNA) in rodent models of CA to determine if SGK1 is responsible for hypoperfusion, neuroinflammation, mitochondrial dysfunctional, and neurological deficits after CA. Inhibition of SGK1 alleviated cortical hypoperfusion and neuroinflammation (via Iba1, GFAP, and cytokine array). Treatment with GSK650394 enhanced mitochondrial function (via Seahorse respirometry) in the hippocampus 3 and 7 days after CA. Neuronal injury (via MAP2, dMBP, and Golgi staining) in the hippocampus and cortex was observed 7 days after CA but ameliorated with SGK1-shRNA. Moreover, SGK1 mediated neuronal injury by regulating the Ndrg1-SOX10 axis. Finally, animals subjected to CA exhibited learning/memory, motor, and anxiety deficits after CA, whereas SGK1 inhibition via SGK1-shRNA improved neurocognitive function. The present study suggests the fundamental roles of SGK1 in brain circulation and neuronal survival/death in cerebral ischemia-related diseases.


Asunto(s)
Isquemia Encefálica , Proteínas Inmediatas-Precoces , Proteínas Serina-Treonina Quinasas , Animales , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Isquemia Encefálica/metabolismo , Masculino , Ratones , Paro Cardíaco/complicaciones , Encéfalo/metabolismo , Neuronas/metabolismo , Ratas , Mitocondrias/metabolismo , Hipocampo/metabolismo , Circulación Cerebrovascular/fisiología , Circulación Cerebrovascular/efectos de los fármacos , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Benzoatos , Compuestos Bicíclicos Heterocíclicos con Puentes
4.
Brain Sci ; 13(9)2023 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-37759938

RESUMEN

Ischemic damage to the brain and loss of neurons contribute to functional disabilities in many stroke survivors. Recovery of neuroplasticity is critical to restoration of function and improved quality of life. Stroke and neurological deficits occur in both adults and children, and yet it is well documented that the developing brain has remarkable plasticity which promotes increased post-ischemic functional recovery compared with adults. However, the mechanisms underlying post-stroke recovery in the young brain have not been fully explored. We observed opposing responses to experimental cerebral ischemia in juvenile and adult mice, with substantial neural regeneration and enhanced neuroplasticity detected in the juvenile brain that was not found in adults. We demonstrate strikingly different stroke-induced neuroimmune responses that are deleterious in adults and protective in juveniles, supporting neural regeneration and plasticity. Understanding age-related differences in neuronal repair and regeneration, restoration of neural network function, and neuroimmune signaling in the stroke-injured brain may offer new insights for the development of novel therapeutic strategies for stroke rehabilitation.

5.
Exp Neurol ; 366: 114445, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37196697

RESUMEN

Mild traumatic brain injury (TBI) comprises the largest percentage of TBI-related injuries, with pathophysiological and functional deficits that persist in a subset of TBI patients. In our three-hit paradigm of repetitive and mild traumatic brain injury (rmTBI), we observed neurovascular uncoupling via decreased red blood cell velocity, microvessel diameter, and leukocyte rolling velocity 3 days post-rmTBI via intra-vital two-photon laser scanning microscopy. Furthermore, our data suggest increased blood-brain barrier (BBB) permeability (leakage), with corresponding decrease in junctional protein expression post-rmTBI. Mitochondrial oxygen consumption rates (measured via Seahorse XFe24) were also altered 3 days post-rmTBI, along with disrupted mitochondrial dynamics of fission and fusion. Overall, these pathophysiological findings correlated with decreased protein arginine methyltransferase 7 (PRMT7) protein levels and activity post-rmTBI. Here, we increased PRMT7 levels in vivo to assess the role of the neurovasculature and mitochondria post-rmTBI. In vivo overexpression of PRMT7 using a neuronal specific AAV vector led to restoration of neurovascular coupling, prevented BBB leakage, and promoted mitochondrial respiration, altogether to suggest a protective and functional role of PRMT7 in rmTBI.


Asunto(s)
Conmoción Encefálica , Lesiones Traumáticas del Encéfalo , Humanos , Barrera Hematoencefálica , Respiración , Proteína-Arginina N-Metiltransferasas
6.
Neurochem Int ; 166: 105524, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37030326

RESUMEN

Mild traumatic brain injury affects the largest proportion of individuals in the United States and world-wide. Pre-clinical studies of repetitive and mild traumatic brain injury (rmTBI) have been limited in their ability to recapitulate human pathology (i.e. diffuse rotational injury). We used the closed-head impact model of engineered rotation acceleration (CHIMERA) to simulate rotational injury observed in patients and to study the pathological outcomes post-rmTBI using C57BL/6J mice. Enhanced cytokine production was observed in both the cortex and hippocampus to suggest neuroinflammation. Furthermore, microglia were assessed via enhanced iba1 protein levels and morphological changes using immunofluorescence. In addition, LC/MS analyses revealed excess glutamate production, as well as diffuse axonal injury via Bielschowsky's silver stain kit. Moreover, the heterogeneous nature of rmTBI has made it challenging to identify drug therapies that address rmTBI, therefore we sought to identify novel targets in the concurrent rmTBI pathology. The pathophysiological findings correlated with a time-dependent decrease in protein arginine methyltransferase 7 (PRMT7) protein expression and activity post-rmTBI along with dysregulation of PRMT upstream mediators s-adenosylmethionine and methionine adenosyltransferase 2 (MAT2) in vivo. In addition, inhibition of the upstream mediator MAT2A using the HT22 hippocampal neuronal cell line suggest a mechanistic role for PRMT7 via MAT2A in vitro. Collectively, we have identified PRMT7 as a novel target in rmTBI pathology in vivo and a mechanistic link between PRMT7 and upstream mediator MAT2A in vitro.


Asunto(s)
Conmoción Encefálica , Lesiones Traumáticas del Encéfalo , Animales , Humanos , Ratones , Conmoción Encefálica/metabolismo , Conmoción Encefálica/patología , Corteza Cerebral/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Metionina Adenosiltransferasa/metabolismo , Ratones Endogámicos C57BL , Proteína-Arginina N-Metiltransferasas/metabolismo
7.
J Cell Physiol ; 2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36036549

RESUMEN

Alzheimer's disease (AD) is the leading cause of mortality, disability, and long-term care burden in the United States, with women comprising the majority of AD diagnoses. While AD-related dementia is associated with tau and amyloid beta accumulation, concurrent derangements in cerebral blood flow have been observed alongside these proteinopathies in humans and rodent models. The homeostatic production of nitric oxide synthases (NOS) becomes uncoupled in AD which leads to decreased NO-mediated vasodilation and oxidative stress via the production of peroxynitrite (ONOO-∙) superoxide species. Here, we investigate the role of the novel protein arginine methyltransferase 4 (PRMT4) enzyme function and its downstream product asymmetric dimethyl arginine (ADMA) as it relates to NOS dysregulation and cerebral blood flow in AD. ADMA (type-1 PRMT product) has been shown to bind NOS as a noncanonic ligand causing enzymatic dysfunction. Our results from RT-qPCR and protein analyses suggest that aged (9-12 months) female mice bearing tau- and amyloid beta-producing transgenic mutations (3xTg-AD) express higher levels of PRMT4 in the hippocampus when compared to age- and sex-matched C57BL6/J mice. In addition, we performed studies to quantify the expression and activity of different NOS isoforms. Furthermore, laser speckle contrast imaging analysis was indicative that 3xTg-AD mice have dysfunctional NOS activity, resulting in reduced production of NO metabolites, enhanced production of free-radical ONOO-, and decreased cerebral blood flow. Notably, the aforementioned phenomena can be reversed via pharmacologic PRMT4 inhibition. Together, these findings implicate the potential importance of PRMT4 signaling in the pathogenesis of Alzheimer's-related cerebrovascular derangement.

8.
Neuromolecular Med ; 24(2): 97-112, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34019239

RESUMEN

Cardiopulmonary arrest (CA) can greatly impact a patient's life, causing long-term disability and death. Although multi-faceted treatment strategies against CA have improved survival rates, the prognosis of CA remains poor. We previously reported asphyxial cardiac arrest (ACA) can cause excessive activation of the sympathetic nervous system (SNS) in the brain, which contributes to cerebral blood flow (CBF) derangements such as hypoperfusion and, consequently, neurological deficits. Here, we report excessive activation of the SNS can cause enhanced neuropeptide Y levels. In fact, mRNA and protein levels of neuropeptide Y (NPY, a 36-amino acid neuropeptide) in the hippocampus were elevated after ACA-induced SNS activation, resulting in a reduced blood supply to the brain. Post-treatment with peptide YY3-36 (PYY3-36), a pre-synaptic NPY2 receptor agonist, after ACA inhibited NPY release and restored brain circulation. Moreover, PYY3-36 decreased neuroinflammatory cytokines, alleviated mitochondrial dysfunction, and improved neuronal survival and neurological outcomes. Overall, NPY is detrimental during/after ACA, but attenuation of NPY release via PYY3-36 affords neuroprotection. The consequences of PYY3-36 inhibit ACA-induced 1) hypoperfusion, 2) neuroinflammation, 3) mitochondrial dysfunction, 4) neuronal cell death, and 5) neurological deficits. The present study provides novel insights to further our understanding of NPY's role in ischemic brain injury.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Paro Cardíaco , Animales , Lesiones Encefálicas/etiología , Isquemia Encefálica/complicaciones , Paro Cardíaco/complicaciones , Paro Cardíaco/metabolismo , Neuropéptido Y/genética , Neuropéptido Y/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Neuropéptido Y/agonistas , Receptores de Neuropéptido Y/genética
9.
J Neurochem ; 159(4): 742-761, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34216036

RESUMEN

Protein arginine methyltransferases (PRMTs) are a family of enzymes involved in gene regulation and protein/histone modifications. PRMT8 is primarily expressed in the central nervous system, specifically within the cellular membrane and synaptic vesicles. Recently, PRMT8 has been described to play key roles in neuronal signaling such as a regulator of dendritic arborization, synaptic function and maturation, and neuronal differentiation and plasticity. Here, we examined the role of PRMT8 in response to hypoxia-induced stress in brain metabolism. Our results from liquid chromatography mass spectrometry, mitochondrial oxygen consumption rate, and protein analyses indicate that PRMT8(-/-) knockout mice presented with altered membrane phospholipid composition, decreased mitochondrial stress capacity, and increased neuroinflammatory markers, such as tumor necrosis factor alpha and ionized calcium binding adaptor molecule 1 (Iba1, a specific marker for microglia/macrophage activation) after hypoxic stress. Furthermore, adenovirus-based overexpression of PRMT8 reversed the changes in membrane phospholipid composition, mitochondrial stress capacity, and neuroinflammatory markers. Together, our findings establish PRMT8 as an important regulatory component of membrane phospholipid composition, short-term memory function, mitochondrial function, and neuroinflammation in response to hypoxic stress.


Asunto(s)
Metabolismo Energético/genética , Hipoxia/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Neuroinflamatorias/genética , Proteína-Arginina N-Metiltransferasas/genética , Animales , Proteínas de Unión al Calcio/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Citocinas/análisis , Citocinas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos/metabolismo , Células-Madre Neurales , Consumo de Oxígeno , Fosfolípidos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
10.
Artículo en Inglés | MEDLINE | ID: mdl-33445063

RESUMEN

We previously discovered that palmitic acid methyl ester (PAME) is a potent vasodilator released from the sympathetic ganglion with vasoactive properties. Post-treatment with PAME can enhance cortical cerebral blood flow and functional learning and memory, while inhibiting neuronal cell death in the CA1 region of the hippocampus under pathological conditions (i.e. cerebral ischemia). Since mechanisms underlying PAME-mediated neuroprotection remain unclear, we investigated the possible neuroprotective mechanisms of PAME after 6 min of asphyxial cardiac arrest (ACA, an animal model of global cerebral ischemia). Our results from capillary-based immunoassay (for the detection of proteins) and cytokine array suggest that PAME (0.02 mg/kg) can decrease neuroinflammatory markers, such as ionized calcium binding adaptor molecule 1 (Iba1, a specific marker for microglia/macrophage activation) and inflammatory cytokines after cardiopulmonary resuscitation. Additionally, the mitochondrial oxygen consumption rate (OCR) and respiratory function in the hippocampal slices were restored following ACA (via Seahorse XF24 Extracellular Flux Analyzer) suggesting that PAME can ameliorate mitochondrial dysfunction. Finally, hippocampal protein arginine methyltransferase 1 (PRMT1) and PRMT8 are enhanced in the presence of PAME to suggest a possible pathway of methylated fatty acids to modulate arginine-based enzymatic methylation. Altogether, our findings suggest that PAME can provide neuroprotection in the presence of ACA to alleviate neuroinflammation and ameliorate mitochondrial dysfunction.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Paro Cardíaco/tratamiento farmacológico , Hipocampo/metabolismo , Proteínas de Microfilamentos/metabolismo , Mitocondrias/metabolismo , Fármacos Neuroprotectores/administración & dosificación , Palmitatos/administración & dosificación , Animales , Reanimación Cardiopulmonar , Circulación Cerebrovascular/efectos de los fármacos , Citocinas , Modelos Animales de Enfermedad , Paro Cardíaco/metabolismo , Hipocampo/efectos de los fármacos , Masculino , Proteínas de la Membrana/metabolismo , Mitocondrias/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Consumo de Oxígeno , Palmitatos/farmacología , Proteína-Arginina N-Metiltransferasas/metabolismo , Ratas , Ratas Sprague-Dawley , Proteínas Represoras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...