Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
CBE Life Sci Educ ; 21(1): ar4, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34941363

RESUMEN

A critical goal for science education is to design and implement learning activities that develop a deep conceptual understanding, are engaging for students, and are scalable for large classes or those with few resources. Approaches based on peer learning and online technologies show promise for scalability but often lack a grounding in cognitive learning principles relating to conceptual understanding. Here, we present a novel design for combining these elements in a principled way. The design centers on having students author multiple-choice questions for their peers using the online platform PeerWise, where beneficial forms of cognitive engagement are encouraged via a series of supporting activities. We evaluated an implementation of this design within a cohort of 632 students in an undergraduate biochemistry course. Our results show a robust relationship between the quality of question authoring and relevant learning outcomes, even after controlling for the confounding influence of prior grades. We conclude by discussing practical and theoretical implications.


Asunto(s)
Evaluación Educacional , Estudiantes , Humanos , Aprendizaje , Motivación , Grupo Paritario
2.
Microb Biotechnol ; 13(6): 1847-1859, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32729670

RESUMEN

As water distribution centres increasingly switch to using chloramine to disinfect drinking water, it is of paramount importance to determine the interactions of chloramine with potential biological contaminants, such as bacterial biofilms, that are found in these systems. For example, ammonia-oxidizing bacteria (AOB) are known to accelerate the decay of chloramine in drinking water systems, but it is also known that organic compounds can increase the chloramine demand. This study expanded upon our previously published model to compare the decay of chloramine in response to alginate, Pseudomonas aeruginosa, Nitrosomonas europaea and a mixed-species nitrifying culture, exploring the contributions of microbial by-products, heterotrophic bacteria and AOBs to chloramine decay. Furthermore, the contribution of AOBs to biofilm stability during chloramination was investigated. The results demonstrate that the biofilm matrix or extracellular polymeric substances (EPS), represented by alginate in these experiments, as well as high concentrations of dead or inactive cells, can drive chloramine decay rather than any specific biochemical activity of P. aeruginosa cells. Alginate was shown to reduce chloramine concentrations in a dose-dependent manner at an average rate of 0.003 mg l-1  h-1 per mg l-1 of alginate. Additionally, metabolically active AOBs mediated the decay of chloramine, which protected members of mixed-species biofilms from chloramine-mediated disinfection. Under these conditions, nitrite produced by AOBs directly reacted with chloramine to drive its decay. In contrast, biofilms of mixed-species communities that were dominated by heterotrophic bacteria due to either the absence of ammonia, or the addition of nitrification inhibitors and glucose, were highly sensitive to chloramine. These results suggest that mixed-species biofilms are protected by a combination of biofilm matrix-mediated inactivation of chloramine as well as the conversion of ammonia to nitrite through the activity of AOBs present in the community.


Asunto(s)
Cloraminas , Nitritos , Amoníaco , Bacterias/genética , Biopelículas , Reactores Biológicos , Nitrificación , Oxidación-Reducción
3.
NPJ Biofilms Microbiomes ; 5(1): 22, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31482007

RESUMEN

Despite considerable research, the biofilm-forming capabilities of Nitrosomonas europaea are poorly understood for both mono and mixed-species communities. This study combined biofilm assays and molecular techniques to demonstrate that N. europaea makes very little biofilm on its own, and relies on the activity of associated heterotrophic bacteria to establish a biofilm. However, N. europaea has a vital role in the proliferation of mixed-species communities under carbon-limited conditions, such as in drinking water distribution systems, through the provision of organic carbon via ammonia oxidation. Results show that the addition of nitrification inhibitors to mixed-species nitrifying cultures under carbon-limited conditions disrupted biofilm formation and caused the dispersal of pre-formed biofilms. This dispersal effect was not observed when an organic carbon source, glucose, was included in the medium. Interestingly, inhibition of nitrification activity of these mixed-species biofilms in the presence of added glucose resulted in increased total biofilm formation compared to controls without the addition of nitrification inhibitors, or with only glucose added. This suggests that active AOB partially suppress or limit the overall growth of the heterotrophic bacteria. The experimental model developed here provides evidence that ammonia-oxidising bacteria (AOB) are involved in both the formation and maintenance of multi-species biofilm communities. The results demonstrate that the activity of the AOB not only support the growth and biofilm formation of heterotrophic bacteria by providing organic carbon, but also restrict and limit total biomass in mixed community systems.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Interacciones Microbianas , Microbiota , Nitrosomonas europaea/crecimiento & desarrollo , Compuestos de Amonio/metabolismo , Carbono/metabolismo , Medios de Cultivo/química , Nitrificación , Nitrosomonas europaea/metabolismo , Compuestos Orgánicos/metabolismo
4.
Mol Ther ; 24(8): 1351-7, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27434588

RESUMEN

Cystic fibrosis (CF) is a life-shortening genetic disease. The root cause of CF is heritable recessive mutations that affect the cystic fibrosis transmembrance conductance regulator (CFTR) gene and the subsequent expression and activity of encoded ion channels at the cell surface. We show that CFTR is regulated transcriptionally by the actions of a novel long noncoding RNA (lncRNA), designated as BGas, that emanates from intron 11 of the CFTR gene and is expressed in the antisense orientation relative to the protein coding sense strand. We find that BGas functions in concert with several proteins including HMGA1, HMGB1, and WIBG to modulate the local chromatin and DNA architecture of intron 11 of the CFTR gene and thereby affects transcription. Suppression of BGas or its associated proteins results in a gain of both CFTR expression and chloride ion function. The observations described here highlight a previously underappreciated mechanism of transcriptional control and suggest that BGas may serve as a therapeutic target for specifically activating expression of CFTR.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/genética , Regulación de la Expresión Génica , ARN sin Sentido/genética , ARN Largo no Codificante , Fibrosis Quística/metabolismo , Proteínas de Unión al ADN/metabolismo , Sitios Genéticos , Humanos , Modelos Biológicos , Unión Proteica
5.
R Soc Open Sci ; 2(6): 140545, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26543579

RESUMEN

The over-expression of Periostin, a member of the fasciclin family of proteins, has been reported in a number of cancers and, in particular, in metastatic tumours. These include breast, ovarian, lung, colon, head and neck, pancreatic, prostate, neuroblastoma and thyroid cancers. It is thought that Periostin plays a major role in the development of metastases owing to its apparent involvement in restructuring of the extracellular matrix to create a microenvironment favouring invasion and metastases, angiogenesis, independent proliferation, avoidance of apoptosis and the ability for cells to re-enter the cell cycle. As such we reasoned that targeted suppression of Periostin at the promoter and epigenetic level could result in the stable inhibition of cell motility. We find here that promoter-directed small antisense non-coding RNAs can induce transcriptional gene silencing of Periostin that results ultimately in a loss of cellular motility. The observations presented here suggest that cell motility and possibly metastasis can be controlled by transcriptional and epigenetic regulation of Periostin, offering a potentially new and novel manner to control the spread of cancerous cells.

6.
Mol Ther ; 22(6): 1164-1175, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24576854

RESUMEN

The abundance of long noncoding RNAs (lncRNAs) and their wide range of functional roles in human cells are fast becoming realized. Importantly, lncRNAs have been identified as epigenetic modulators and consequently play a pivotal role in the regulation of gene expression. A human immunodeficiency virus-encoded antisense RNA transcript has recently been reported and we sought to characterize this RNA and determine its potential role in viral transcription regulation. The intrinsic properties of this human immunodeficiency virus-expressed lncRNA were characterized and the data presented here suggest that it functions as an epigenetic brake to modulate viral transcription. Suppression of this long antisense transcript with small single-stranded antisense RNAs resulted in the activation of viral gene expression. This lncRNA was found to localize to the 5' long-term repeats (LTR) and to usurp components of endogenous cellular pathways that are involved in lncRNA directed epigenetic gene silencing. Collectively, we find that this viral expressed antisense lncRNA is involved in modulating human immunodeficiency virus gene expression and that this regulatory effect is due to an alteration in the epigenetic landscape at the viral promoter.


Asunto(s)
Regulación Viral de la Expresión Génica/efectos de los fármacos , VIH-1/fisiología , ARN sin Sentido/genética , ARN Largo no Codificante/genética , ARN Mensajero/genética , ARN Viral/genética , Azacitidina/farmacología , Epigénesis Genética , Células HEK293 , Infecciones por VIH/virología , VIH-1/efectos de los fármacos , VIH-1/genética , Humanos , Ácidos Hidroxámicos/farmacología , Células Jurkat , Regiones Promotoras Genéticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...