RESUMEN
In September 2023, the two largest bioimaging networks in the Americas, Latin America Bioimaging (LABI) and BioImaging North America (BINA), came together during a 1-week meeting in Mexico. This meeting provided opportunities for participants to interact closely with decision-makers from imaging core facilities across the Americas. The meeting was held in a hybrid format and attended in-person by imaging scientists from across the Americas, including Canada, the United States, Mexico, Colombia, Peru, Argentina, Chile, Brazil and Uruguay. The aims of the meeting were to discuss progress achieved over the past year, to foster networking and collaborative efforts among members of both communities, to bring together key members of the international imaging community to promote the exchange of experience and expertise, to engage with industry partners, and to establish future directions within each individual network, as well as common goals. This meeting report summarises the discussions exchanged, the achievements shared, and the goals set during the LABIxBINA2023: Bioimaging across the Americas meeting.
RESUMEN
Chronic inflammation is associated with higher risk of cardiovascular disease (CVD) in people living with HIV (PLWH). We have previously shown that interleukin-32 (IL-32), a multi-isoform proinflammatory cytokine, is chronically upregulated in PLWH and is linked with CVD. However, the mechanistic roles of the different IL-32 isoforms in CVD are yet to be identified. In this study, we aimed to investigate the potential impact of IL-32 isoforms on coronary artery endothelial cells (CAEC), whose dysfunction represents a major factor for atherosclerosis. Our results demonstrated that the predominantly expressed IL-32 isoforms (IL-32ß and IL-32γ) have a selective impact on the production of the proinflammatory cytokine IL-6 by CAEC. Furthermore, these two isoforms induced endothelial cell dysfunction by upregulating the expression of the adhesion molecules ICAM-I and VCAM-I and the chemoattractants CCL-2, CXCL-8 and CXCL-1. IL-32-mediated expression of these chemokines was sufficient to drive monocyte transmigration in vitro. Finally, we demonstrate that IL-32 expression in both PLWH and controls correlates with the carotid artery stiffness, measured by the cumulated lateral translation. These results suggest a role for IL-32-mediated endothelial cell dysfunction in dysregulation of the blood vessel wall and that IL-32 may represent a therapeutic target to prevent CVD in PLWH.
Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Interleucinas , Rigidez Vascular , Humanos , Vasos Coronarios , Citocinas/metabolismo , Células Endoteliales/metabolismo , Interleucinas/metabolismo , Isoformas de ProteínasRESUMEN
BACKGROUND: Interleukin-27 (IL-27) can trigger both pro- and anti-inflammatory responses. This cytokine is elevated in the central nervous system (CNS) of multiple sclerosis (MS) patients, but how it influences neuroinflammatory processes remains unclear. As astrocytes express the receptor for IL-27, we sought to determine how these glial cells respond to this cytokine and whether such exposure alters their interactions with infiltrating activated T lymphocytes. To determine whether inflammation shapes the impact of IL-27, we compared the effects of this cytokine in non-inflamed and inflamed conditions induced by an IL-1ß exposure. MAIN BODY: Transcriptomic analysis of IL-27-exposed human astrocytes showed an upregulation of multiple immune genes. Human astrocytes increased the secretion of chemokines (CXCL9, CXCL10, and CXCL11) and the surface expression of proteins (PD-L1, HLA-E, and ICAM-1) following IL-27 exposure. To assess whether exposure of astrocytes to IL-27 influences the profile of activated T lymphocytes infiltrating the CNS, we used an astrocyte/T lymphocyte co-culture model. Activated human CD4+ or CD8+ T lymphocytes were co-cultured with astrocytes that have been either untreated or pre-exposed to IL27 or IL-1ß. After 24 h, we analyzed T lymphocytes by flow cytometry for transcription factors and immune molecules. The contact with IL-27-exposed astrocytes increased the percentages of T-bet, Eomes, CD95, IL-18Rα, ICAM-1, and PD-L1 expressing CD4+ and CD8+ T lymphocytes and reduced the proportion of CXCR3-positive CD8+ T lymphocytes. Human CD8+ T lymphocytes co-cultured with human IL-27-treated astrocytes exhibited higher motility than when in contact with untreated astrocytes. These results suggested a preponderance of kinapse-like over synapse-like interactions between CD8+ T lymphocytes and IL-27-treated astrocytes. Finally, CD8+ T lymphocytes from MS patients showed higher motility in contact with IL-27-exposed astrocytes compared to healthy donors' cells. CONCLUSION: Our results establish that IL-27 alters the immune functions of human astrocytes and shapes the profile and motility of encountered T lymphocytes, especially CD8+ T lymphocytes from MS patients.
Asunto(s)
Interleucina-27 , Esclerosis Múltiple , Astrocitos/metabolismo , Antígeno B7-H1/metabolismo , Linfocitos T CD8-positivos , Citocinas/metabolismo , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Interleucina-27/metabolismo , InterleucinasRESUMEN
The extracellular matrix (ECM) plays critical roles in breast cancer development. Whether ECM composition is regulated by the phosphorylation of eIF4E on serine 209, an event required for tumorigenesis, has not been explored. Herein, we used proteomics and mouse modeling to investigate the impact of mutating serine 209 to alanine on eIF4E (i.e., S209A) on mammary gland (MG) ECM. The proteomic data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD028953. We discovered that S209A knock-in mice, expressing a non-phosphorylatable form of eIF4E, have less collagen-I deposition in native and tumor-bearing MGs, leading to altered tumor cell invasion. Additionally, phospho-eIF4E deficiency impacts collagen topology; fibers at the tumor-stroma boundary in phospho-eIF4E-deficient mice run parallel to the tumor edge but radiate outwards in wild-type mice. Finally, a phospho-eIF4E-deficient tumor microenvironment resists anti-PD-1 therapy-induced collagen deposition, correlating with an increased anti-tumor response to immunotherapy. Clinically, we showed that collagen-I and phospho-eIF4E are positively correlated in human breast cancer samples, and that stromal phospho-eIF4E expression is influenced by tumor proximity. Together, our work defines the importance of phosphorylation of eIF4E on S209 as a regulator of MG collagen architecture in the tumor microenvironment, thereby positioning phospho-eIF4E as a therapeutic target to augment response to therapy.
Asunto(s)
Neoplasias de la Mama , Glándulas Mamarias Humanas , Animales , Neoplasias de la Mama/metabolismo , Colágeno/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Factor 4E Eucariótico de Iniciación/metabolismo , Femenino , Humanos , Glándulas Mamarias Humanas/metabolismo , Ratones , Fosforilación , Proteómica , Serina/metabolismo , Microambiente TumoralRESUMEN
Multiple sclerosis (MS) is characterized by the loss of myelin and of myelin-producing oligodendrocytes (OLs) in the central nervous system (CNS). Pro-inflammatory CD4+ Th17 cells are considered pathogenic in MS and are harmful to OLs. We investigated the mechanisms driving human CD4+ T cell-mediated OL cell death. Using fluorescent and brightfield in vitro live imaging, we found that compared to Th2-polarized cells, Th17-polarized cells show greater interactions with primary human OLs and human oligodendrocytic cell line MO3.13, displaying longer duration of contact, lower mean speed, and higher rate of vesicle-like structure formation at the sites of contact. Using single-cell RNA sequencing, we assessed the transcriptomic profile of primary human OLs and Th17-polarized cells in direct contact or separated by an insert. We showed that upon close interaction, OLs upregulate the expression of mRNA coding for chemokines and antioxidant/anti-apoptotic molecules, while Th17-polarized cells upregulate the expression of mRNA coding for chemokines and pro-inflammatory cytokines such as IL-17A, IFN-γ, and granzyme B. We found that secretion of CCL3, CXCL10, IFN-γ, TNFα, and granzyme B is induced upon direct contact in cocultures of human Th17-polarized cells with human OLs. In addition, we validated by flow cytometry and immunofluorescence that granzyme B levels are upregulated in Th17-polarized compared to Th2-polarized cells and are even higher in Th17-polarized cells upon direct contact with OLs or MO3.13 cells compared to Th17-polarized cells separated from OLs by an insert. Moreover, granzyme B is detected in OLs and MO3.13 cells following direct contact with Th17-polarized cells, suggesting the release of granzyme B from Th17-polarized cells into OLs/MO3.13 cells. To confirm granzyme B-mediated cytotoxicity toward OLs, we showed that recombinant human granzyme B can induce OLs and MO3.13 cell death. Furthermore, pretreatment of Th17-polarized cells with a reversible granzyme B blocker (Ac-IEPD-CHO) or a natural granzyme B blocker (serpina3N) improved survival of MO3.13 cells upon coculture with Th17 cells. In conclusion, we showed that human Th17-polarized cells form biologically significant contacts with human OLs and exert direct toxicity by releasing granzyme B.
Asunto(s)
Esclerosis Múltiple , Células Th17 , Granzimas/metabolismo , Humanos , Interferón gamma/metabolismo , Esclerosis Múltiple/metabolismo , Oligodendroglía , ARN Mensajero/metabolismo , Células Th17/metabolismoRESUMEN
To fully perform their functions, T lymphocytes migrate within organs' parenchyma and interact with local cells. Infiltration of T lymphocytes within the central nervous system (CNS) is associated with numerous neurodegenerative disorders. Nevertheless, how these immune cells communicate and respond to neural cells remains unresolved. To investigate the behavior of T lymphocytes that reach the CNS, we have established an in vitro co-culture model and analyzed the spatiotemporal interactions between human activated CD8+ T lymphocytes and primary human astrocytes and neurons using time-lapse microscopy. By combining multiple variables extracted from individual CD8+ T cell tracking, we show that CD8+ T lymphocytes adopt a more motile and exploratory behavior upon interacting with astrocytes than with neurons. Pretreatment of astrocytes or neurons with IL-1ß to mimic in vivo inflammation significantly increases CD8+ T lymphocyte motility. Using visual interpretation and analysis of numerical variables extracted from CD8+ T cell tracking, we identified four distinct CD8+ T lymphocyte behaviors: scanning, dancing, poking and round. IL-1ß-pretreatment significantly increases the proportion of scanning CD8+ T lymphocytes, which are characterized by active exploration, and reduces the proportion of round CD8+ T lymphocytes, which are less active. Blocking MHC class I on astrocytes significantly diminishes the proportion of poking CD8+ T lymphocytes, which exhibit synapse-like interactions. Lastly, our co-culture time-lapse model is easily adaptable and sufficiently sensitive and powerful to characterize and quantify spatiotemporal interactions between human T lymphocytes and primary human cells in different conditions while preserving viability of fragile cells such as neurons and astrocytes.
Asunto(s)
Astrocitos/fisiología , Linfocitos T CD8-positivos/fisiología , Comunicación Celular , Microscopía por Video , Neuronas/metabolismo , Imagen de Lapso de Tiempo , Adulto , Astrocitos/efectos de los fármacos , Astrocitos/inmunología , Linfocitos T CD8-positivos/inmunología , Comunicación Celular/efectos de los fármacos , Movimiento Celular , Células Cultivadas , Técnicas de Cocultivo , Femenino , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Inflamación/inmunología , Interleucina-1beta/farmacología , Masculino , Persona de Mediana Edad , Neuronas/efectos de los fármacos , Neuronas/inmunología , Fenotipo , Factores de Tiempo , Adulto JovenRESUMEN
Breast cancer diagnosed within 10 years following childbirth is defined as postpartum breast cancer (PPBC) and is highly metastatic. Interactions between immune cells and other stromal cells within the involuting mammary gland are fundamental in facilitating an aggressive tumor phenotype. The MNK1/2-eIF4E axis promotes translation of prometastatic mRNAs in tumor cells, but its role in modulating the function of nontumor cells in the PPBC microenvironment has not been explored. Here, we used a combination of in vivo PPBC models and in vitro assays to study the effects of inactivation of the MNK1/2-eIF4E axis on the protumor function of select cells of the tumor microenvironment. PPBC mice deficient for phospho-eIF4E (eIF4ES209A) were protected against lung metastasis and exhibited differences in the tumor and lung immune microenvironment compared with wild-type mice. Moreover, the expression of fibroblast-derived IL33, an alarmin known to induce invasion, was repressed upon MNK1/2-eIF4E axis inhibition. Imaging mass cytometry on PPBC and non-PPBC patient samples indicated that human PPBC contains phospho-eIF4E high-expressing tumor cells and CD8+ T cells displaying markers of an activated dysfunctional phenotype. Finally, inhibition of MNK1/2 combined with anti-PD-1 therapy blocked lung metastasis of PPBC. These findings implicate the involvement of the MNK1/2-eIF4E axis during PPBC metastasis and suggest a promising immunomodulatory route to enhance the efficacy of immunotherapy by blocking phospho-eIF4E. SIGNIFICANCE: This study investigates the MNK1/2-eIF4E signaling axis in tumor and stromal cells in metastatic breast cancer and reveals that MNK1/2 inhibition suppresses metastasis and sensitizes tumors to anti-PD-1 immunotherapy.
Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Factor 4E Eucariótico de Iniciación/uso terapéutico , Terapia de Inmunosupresión/métodos , Animales , Modelos Animales de Enfermedad , Factor 4E Eucariótico de Iniciación/farmacología , Femenino , Humanos , Ratones , Metástasis de la Neoplasia , Periodo PospartoRESUMEN
The immune landscape of the tumor microenvironment (TME) is a determining factor in cancer progression and response to therapy. Specifically, the density and the location of immune cells in the TME have important diagnostic and prognostic values. Multiomic profiling of the TME has exponentially increased our understanding of the numerous cellular and molecular networks regulating tumor initiation and progression. However, these techniques do not provide information about the spatial organization of cells or cell-cell interactions. Affordable, accessible, and easy to execute multiplexing techniques that allow spatial resolution of immune cells in tissue sections are needed to complement single cell-based high-throughput technologies. Here, we describe a strategy that integrates serial imaging, sequential labeling, and image alignment to generate virtual multiparameter slides of whole tissue sections. Virtual slides are subsequently analyzed in an automated fashion using user-defined protocols that enable identification, quantification, and mapping of cell populations of interest. The image analysis is done, in this case using the analysis modules Tissuealign, Author, and HISTOmap. We present an example where we applied this strategy successfully to one clinical specimen, maximizing the information that can be obtained from limited tissue samples and providing an unbiased view of the TME in the entire tissue section.
Asunto(s)
Leucocitos/patología , Microambiente Tumoral/inmunología , Anticuerpos Antineoplásicos/inmunología , Antígenos de Neoplasias/inmunología , Automatización , Calor , Humanos , Procesamiento de Imagen Asistido por Computador , Adhesión en Parafina , Coloración y Etiquetado , Células del Estroma/metabolismo , Fijación del TejidoRESUMEN
Classical CD16- vs intermediate/nonclassical CD16+ monocytes differ in their homing potential and biological functions, but whether they differentiate into dendritic cells (DCs) with distinct contributions to immunity against bacterial/viral pathogens remains poorly investigated. Here, we employed a systems biology approach to identify clinically relevant differences between CD16+ and CD16- monocyte-derived DCs (MDDCs). Although both CD16+ and CD16- MDDCs acquire classical immature/mature DC markers in vitro, genome-wide transcriptional profiling revealed unique molecular signatures for CD16+ MDDCs, including adhesion molecules (ITGAE/CD103), transcription factors (TCF7L2/TCF4), and enzymes (ALDH1A2/RALDH2), whereas CD16- MDDCs exhibit a CDH1/E-cadherin+ phenotype. Of note, lipopolysaccharides (LPS) upregulated distinct transcripts in CD16+ (eg, CCL8, SIGLEC1, MIR4439, SCIN, interleukin [IL]-7R, PLTP, tumor necrosis factor [TNF]) and CD16- MDDCs (eg, MMP10, MMP1, TGM2, IL-1A, TNFRSF11A, lysosomal-associated membrane protein 1, MMP8). Also, unique sets of HIV-modulated genes were identified in the 2 subsets. Further gene set enrichment analysis identified canonical pathways that pointed to "inflammation" as the major feature of CD16+ MDDCs at immature stage and on LPS/HIV exposure. Finally, functional validations and meta-analysis comparing the transcriptome of monocyte and MDDC subsets revealed that CD16+ vs CD16- monocytes preserved their superior ability to produce TNF-α and CCL22, as well as other sets of transcripts (eg, TCF4), during differentiation into DC. These results provide evidence that monocyte subsets are transcriptionally imprinted/programmed with specific differentiation fates, with intermediate/nonclassical CD16+ monocytes being precursors for pro-inflammatory CD103+RALDH2+TCF4+ DCs that may play key roles in mucosal immunity homeostasis/pathogenesis. Thus, alterations in the CD16+ /CD16- monocyte ratios during pathological conditions may dramatically influence the quality of MDDC-mediated immunity.
Asunto(s)
Antígenos CD/metabolismo , Células Dendríticas/metabolismo , Cadenas alfa de Integrinas/metabolismo , Monocitos/metabolismo , Receptores de IgG/metabolismo , Retinal-Deshidrogenasa/metabolismo , Factor de Transcripción 4/metabolismo , Transcripción Genética , Familia de Aldehído Deshidrogenasa 1 , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Quimiocinas/genética , Quimiocinas/metabolismo , Citocinas/genética , Citocinas/metabolismo , Células Dendríticas/citología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , VIH-1/fisiología , Humanos , Leucocitos Mononucleares/citología , Lipopolisacáridos/farmacología , MicroARNs/metabolismo , Monocitos/citología , Monocitos/efectos de los fármacos , Monocitos/inmunología , Transcripción Genética/efectos de los fármacosRESUMEN
BACKGROUND: The HIV-1 infection is characterized by profound CD4(+) T cell destruction and a marked Th17 dysfunction at the mucosal level. Viral suppressive antiretroviral therapy restores Th1 but not Th17 cells. Although several key HIV dependency factors (HDF) were identified in the past years via genome-wide siRNA screens in cell lines, molecular determinants of HIV permissiveness in primary Th17 cells remain to be elucidated. RESULTS: In an effort to orient Th17-targeted reconstitution strategies, we investigated molecular mechanisms of HIV permissiveness in Th17 cells. Genome-wide transcriptional profiling in memory CD4(+) T-cell subsets enriched in cells exhibiting Th17 (CCR4(+)CCR6(+)), Th1 (CXCR3(+)CCR6(-)), Th2 (CCR4(+)CCR6(-)), and Th1Th17 (CXCR3(+)CCR6(+)) features revealed remarkable transcriptional differences between Th17 and Th1 subsets. The HIV-DNA integration was superior in Th17 versus Th1 upon exposure to both wild-type and VSV-G-pseudotyped HIV; this indicates that post-entry mechanisms contribute to viral replication in Th17. Transcripts significantly enriched in Th17 versus Th1 were previously associated with the regulation of TCR signaling (ZAP-70, Lck, and CD96) and Th17 polarization (RORγt, ARNTL, PTPN13, and RUNX1). A meta-analysis using the NCBI HIV Interaction Database revealed a set of Th17-specific HIV dependency factors (HDFs): PARG, PAK2, KLF2, ITGB7, PTEN, ATG16L1, Alix/AIP1/PDCD6IP, LGALS3, JAK1, TRIM8, MALT1, FOXO3, ARNTL/BMAL1, ABCB1/MDR1, TNFSF13B/BAFF, and CDKN1B. Functional studies demonstrated an increased ability of Th17 versus Th1 cells to respond to TCR triggering in terms of NF-κB nuclear translocation/DNA-binding activity and proliferation. Finally, RNA interference studies identified MAP3K4 and PTPN13 as two novel Th17-specific HDFs. CONCLUSIONS: The transcriptional program of Th17 cells includes molecules regulating HIV replication at multiple post-entry steps that may represent potential targets for novel therapies aimed at protecting Th17 cells from infection and subsequent depletion in HIV-infected subjects.
Asunto(s)
Infecciones por VIH/virología , VIH-1/fisiología , Receptores de Antígenos de Linfocitos T/inmunología , Células Th17/inmunología , Células Th17/virología , Replicación Viral , Adulto , Células Cultivadas , Femenino , Perfilación de la Expresión Génica , Humanos , Inmunidad Mucosa , Memoria Inmunológica , MAP Quinasa Quinasa Quinasa 4/genética , MAP Quinasa Quinasa Quinasa 4/metabolismo , Masculino , FN-kappa B/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 13/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 13/metabolismo , Interferencia de ARN , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores CCR4/inmunología , Receptores CCR6/inmunología , Subgrupos de Linfocitos T/virología , Células TH1/inmunología , Células TH1/virología , Células Th17/clasificación , TranscriptomaRESUMEN
BACKGROUND: Depletion of mucosal Th17 cells during HIV/SIV infections is a major cause for microbial translocation, chronic immune activation, and disease progression. Mechanisms contributing to Th17 deficit are not fully elucidated. Here we investigated alterations in the Th17 polarization potential of naive-like CD4(+) T-cells, depletion of Th17-commited subsets during HIV pathogenesis, and Th17 restoration in response to antiretroviral therapy (ART). RESULTS: Peripheral blood CD4(+) T-cells expressing a naive-like phenotype (CD45RA(+)CCR7(+)) from chronically HIV-infected subjects receiving ART (CI on ART; median CD4 counts 592 cells/µl; viral load: <50 HIV-RNA copies/ml; time since infection: 156 months) compared to uninfected controls (HIV-) were impaired in their survival and Th17 polarization potential in vitro. In HIV- controls, IL-17A-producing cells mainly originated from naive-like T-cells with a regulatory phenotype (nTregs: CD25(high)CD127(-)FoxP3(+)) and from CD25(+)CD127(+)FoxP3(-) cells (DP, double positive). Th17-polarized conventional naive CD4(+) T-cells (nT: CD25(-)CD127(+)FoxP3(-)) also produced IL17A, but at lower frequency compared to nTregs and DP. In CI on ART subjects, the frequency/counts of nTreg and DP were significantly diminished compared to HIV- controls, and this paucity was further associated with decreased proportions of memory T-cells producing IL-17A and expressing Th17 markers (CCR6(+)CD26(+)CD161(+), mTh17). nTregs and DP compared to nT cells harbored superior levels of integrated/non-integrated HIV-DNA in CI on ART subjects, suggesting that permissiveness to integrative/abortive infection contributes to impaired survival and Th17 polarization of lineage-committed cells. A cross-sectional study in CI on ART subjects revealed that nTregs, DP and mTh17 counts were negatively correlated with the time post-infection ART was initiated and positively correlated with nadir CD4 counts. Finally, a longitudinal analysis in a HIV primary infection cohort demonstrated a tendency for increased nTreg, DP, and mTh17 counts with ART initiation during the first year of infection. CONCLUSIONS: These results support a model in which the paucity of phenotypically naive nTregs and DP cells, caused by integrative/abortive HIV infection and/or other mechanisms, contributes to Th17 deficiency in HIV-infected subjects. Early ART initiation, treatment intensification with integrase inhibitors, and/or other alternative interventions aimed at preserving/restoring the pool of cells prone to acquire Th17 functions may significantly improve mucosal immunity in HIV-infected subjects.
Asunto(s)
Antirretrovirales/uso terapéutico , Linfocitos T CD4-Positivos/inmunología , Diferenciación Celular , Infecciones por VIH/inmunología , VIH-1/inmunología , Subgrupos de Linfocitos T/inmunología , Células Th17/inmunología , Terapia Antirretroviral Altamente Activa , Linfocitos T CD4-Positivos/citología , Enfermedad Crónica , Estudios Transversales , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , Humanos , Estudios Longitudinales , Subgrupos de Linfocitos T/citologíaRESUMEN
BACKGROUND: We previously demonstrated that primary Th1Th17 cells are highly permissive to HIV-1, whereas Th1 cells are relatively resistant. Molecular mechanisms underlying these differences remain unknown. RESULTS: Exposure to replication competent and single-round VSV-G pseudotyped HIV strains provide evidence that superior HIV replication in Th1Th17 vs. Th1 cells was regulated by mechanisms located at entry and post-entry levels. Genome-wide transcriptional profiling identified transcripts upregulated (n = 264) and downregulated (n = 235) in Th1Th17 vs. Th1 cells (p-value < 0.05; fold change cut-off 1.3). Gene Set Enrichment Analysis revealed pathways enriched in Th1Th17 (nuclear receptors, trafficking, p38/MAPK, NF-κB, p53/Ras, IL-23) vs. Th1 cells (proteasome, interferon α/ß). Differentially expressed genes were classified into biological categories using Gene Ontology. Th1Th17 cells expressed typical Th17 markers (IL-17A/F, IL-22, CCL20, RORC, IL-26, IL-23R, CCR6) and transcripts functionally linked to regulating cell trafficking (CEACAM1, MCAM), activation (CD28, CD40LG, TNFSF13B, TNFSF25, PTPN13, MAP3K4, LTB, CTSH), transcription (PPARγ, RUNX1, ATF5, ARNTL), apoptosis (FASLG), and HIV infection (CXCR6, FURIN). Differential expression of CXCR6, PPARγ, ARNTL, PTPN13, MAP3K4, CTSH, SERPINB6, PTK2, and ISG20 was validated by RT-PCR, flow cytometry and/or confocal microscopy. The nuclear receptor PPARγ was preferentially expressed by Th1Th17 cells. PPARγ RNA interference significantly increased HIV replication at levels post-entry and prior HIV-DNA integration. Finally, the activation of PPARγ pathway via the agonist Rosiglitazone induced the nuclear translocation of PPARγ and a robust inhibition of viral replication. CONCLUSIONS: Thus, transcriptional profiling in Th1Th17 vs. Th1 cells demonstrated that HIV permissiveness is associated with a superior state of cellular activation and limited antiviral properties and identified PPARγ as an intrinsic negative regulator of viral replication. Therefore, triggering PPARγ pathway via non-toxic agonists may contribute to limiting covert HIV replication and disease progression during antiretroviral treatment.
Asunto(s)
Perfilación de la Expresión Génica , VIH-1/inmunología , VIH-1/fisiología , PPAR gamma/metabolismo , Células TH1/inmunología , Células Th17/inmunología , Replicación Viral , Células Cultivadas , Ecocardiografía Doppler en Color , Citometría de Flujo , Humanos , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/virología , Reacción en Cadena en Tiempo Real de la Polimerasa , Células TH1/virología , Células Th17/virologíaRESUMEN
Bacillus anthracis, the agent of anthrax, produces two main virulence factors: a capsule and two toxins. Both lethal toxin (LT) and edema toxin (ET) paralyze the immune defense system. Here, we analyze the effects of LT and ET on the capacity of human monocyte-derived dendritic cells (MoDC) to produce proinflammatory chemokines. We show that both toxins disrupt proinflammatory chemokine production. LT has more pronounced effects than ET on CXCL8 production, which is correlated with impaired recruitment of neutrophils in vitro. Finally, we show that both toxins also differentially disrupt IL-12p70, IL-10, and TNF-α production. Taken together, these results demonstrate that both B. anthracis toxins alter MoDC functions and the activation of the innate immune system.