Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Virol ; 98(7): e0015524, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38832790

RESUMEN

Marburg virus infection in humans is associated with case fatality rates that can reach up to 90%, but to date, there are no approved vaccines or monoclonal antibody (mAb) countermeasures. Here, we immunized Rhesus macaques with multivalent combinations of filovirus glycoprotein (GP) antigens belonging to Marburg, Sudan, and Ebola viruses to generate monospecific and cross-reactive antibody responses against them. From the animal that developed the highest titers of Marburg virus GP-specific neutralizing antibodies, we sorted single memory B cells using a heterologous Ravn virus GP probe and cloned and characterized a panel of 34 mAbs belonging to 28 unique lineages. Antibody specificities were assessed by overlapping pepscan and binding competition analyses, revealing that roughly a third of the lineages mapped to the conserved receptor binding region, including potent neutralizing lineages that were confirmed by negative stain electron microscopy to target this region. Additional lineages targeted a protective region on GP2, while others were found to possess cross-filovirus reactivity. Our study advances the understanding of orthomarburgvirus glycoprotein antigenicity and furthers efforts to develop candidate antibody countermeasures against these lethal viruses. IMPORTANCE: Marburg viruses were the first filoviruses characterized to emerge in humans in 1967 and cause severe hemorrhagic fever with average case fatality rates of ~50%. Although mAb countermeasures have been approved for clinical use against the related Ebola viruses, there are currently no approved countermeasures against Marburg viruses. We successfully isolated a panel of orthomarburgvirus GP-specific mAbs from a macaque immunized with a multivalent combination of filovirus antigens. Our analyses revealed that roughly half of the antibodies in the panel mapped to regions on the glycoprotein shown to protect from infection, including the host cell receptor binding domain and a protective region on the membrane-anchoring subunit. Other antibodies in the panel exhibited broad filovirus GP recognition. Our study describes the discovery of a diverse panel of cross-reactive macaque antibodies targeting orthomarburgvirus and other filovirus GPs and provides candidate immunotherapeutics for further study and development.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Reacciones Cruzadas , Macaca mulatta , Enfermedad del Virus de Marburg , Marburgvirus , Animales , Marburgvirus/inmunología , Anticuerpos Antivirales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Monoclonales/inmunología , Enfermedad del Virus de Marburg/inmunología , Enfermedad del Virus de Marburg/prevención & control , Reacciones Cruzadas/inmunología , Glicoproteínas/inmunología , Proteínas del Envoltorio Viral/inmunología , Inmunización , Humanos , Ebolavirus/inmunología , Antígenos Virales/inmunología
2.
bioRxiv ; 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38585818

RESUMEN

Alpha-1-antitrypsin (A1AT) is a multifunctional, clinically important, high value therapeutic glycoprotein that can be used for the treatment of many diseases such as alpha-1-antitrypsin deficiency, diabetes, graft-versus-host-disease, cystic fibrosis and various viral infections. Currently, the only FDA-approved treatment for A1AT disorders is intravenous augmentation therapy with human plasma-derived A1AT. In addition to its limited supply, this approach poses a risk of infection transmission, since it uses therapeutic A1AT harvested from donors. To address these issues, we sought to generate recombinant human A1AT (rhA1AT) that is chemically and biologically indistinguishable from its plasma-derived counterpart using glycoengineered Chinese Hamster Ovary (geCHO-L) cells. By deleting nine key genes that are part of the CHO glycosylation machinery and expressing the human ST6GAL1 and A1AT genes, we obtained stable, high producing geCHO-L lines that produced rhA1AT having an identical glycoprofile to plasma-derived A1AT (pdA1AT). Additionally, the rhA1AT demonstrated in vitro activity and in vivo half-life comparable to commercial pdA1AT. Thus, we anticipate that this platform will help produce human-like recombinant plasma proteins, thereby providing a more sustainable and reliable source of therapeutics that are cost-effective and better-controlled with regard to purity, clinical safety and quality.

3.
Sensors (Basel) ; 23(22)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38005627

RESUMEN

Real-world gait analysis can aid in clinical assessments and influence related interventions, free from the restrictions of a laboratory setting. Using individual accelerometers, we aimed to use a simple machine learning method to quantify the performance of the discrimination between three self-selected cyclical locomotion types using accelerometers placed at frequently referenced attachment locations. Thirty-five participants walked along a 10 m walkway at three different speeds. Triaxial accelerometers were attached to the sacrum, thighs and shanks. Slabs of magnitude, three-second-long accelerometer data were transformed into two-dimensional Fourier spectra. Principal component analysis was undertaken for data reduction and feature selection, followed by discriminant function analysis for classification. Accuracy was quantified by calculating scalar accounting for the distances between the three centroids and the scatter of each category's cloud. The algorithm could successfully discriminate between gait modalities with 91% accuracy at the sacrum, 90% at the shanks and 87% at the thighs. Modalities were discriminated with high accuracy in all three sensor locations, where the most accurate location was the sacrum. Future research will focus on optimising the data processing of information from sensor locations that are advantageous for practical reasons, e.g., shank for prosthetic and orthotic devices.


Asunto(s)
Extremidad Inferior , Dispositivos Electrónicos Vestibles , Humanos , Marcha , Pierna , Aprendizaje Automático
4.
Langmuir ; 39(35): 12313-12323, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37603854

RESUMEN

Lipid nanoparticles are a generic type of nanomaterial with broad applicability in medicine as drug delivery vehicles. Liposomes are a subtype of lipid nanoparticles and, as a therapeutic platform, can be loaded with a genetic material or pharmaceutical agents for use as drug treatments. An open question for these types of lipid nanoparticles is what factor(s) affect the long-term stability of the particles. The stability of the particle is of great interest to understand and predict the effective shelf-life and storage requirements. In this report, we detail a one-year study of liposome stability as a function of lipid composition, buffer composition/pH, and storage temperature. This was done in aqueous solution without freezing. The effect of lipid composition is shown to be a critical factor when evaluating stability of the measured particle size and number concentration. Other factors (i.e., storage temperature and buffer pH/composition) were shown to be less critical but still have some effect. The stability of these particles informs formulation and optimal storage requirements and assists with future developmental planning of a NIST liposome-based reference material. This work also highlights the complex nature of long-term soft particle storage in biopharmaceutical applications.


Asunto(s)
Productos Biológicos , Liposomas , Sistemas de Liberación de Medicamentos , Biotina , Lípidos
5.
Acta Crystallogr D Struct Biol ; 78(Pt 11): 1315-1336, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36322416

RESUMEN

Through an expansive international effort that involved data collection on 12 small-angle X-ray scattering (SAXS) and four small-angle neutron scattering (SANS) instruments, 171 SAXS and 76 SANS measurements for five proteins (ribonuclease A, lysozyme, xylanase, urate oxidase and xylose isomerase) were acquired. From these data, the solvent-subtracted protein scattering profiles were shown to be reproducible, with the caveat that an additive constant adjustment was required to account for small errors in solvent subtraction. Further, the major features of the obtained consensus SAXS data over the q measurement range 0-1 Å-1 are consistent with theoretical prediction. The inherently lower statistical precision for SANS limited the reliably measured q-range to <0.5 Å-1, but within the limits of experimental uncertainties the major features of the consensus SANS data were also consistent with prediction for all five proteins measured in H2O and in D2O. Thus, a foundation set of consensus SAS profiles has been obtained for benchmarking scattering-profile prediction from atomic coordinates. Additionally, two sets of SAXS data measured at different facilities to q > 2.2 Å-1 showed good mutual agreement, affirming that this region has interpretable features for structural modelling. SAS measurements with inline size-exclusion chromatography (SEC) proved to be generally superior for eliminating sample heterogeneity, but with unavoidable sample dilution during column elution, while batch SAS data collected at higher concentrations and for longer times provided superior statistical precision. Careful merging of data measured using inline SEC and batch modes, or low- and high-concentration data from batch measurements, was successful in eliminating small amounts of aggregate or interparticle interference from the scattering while providing improved statistical precision overall for the benchmarking data set.


Asunto(s)
Benchmarking , Proteínas , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Consenso , Reproducibilidad de los Resultados , Proteínas/química , Solventes
6.
Commun Biol ; 4(1): 956, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34381159

RESUMEN

Lipid Nanoparticles (LNPs) are used to deliver siRNA and COVID-19 mRNA vaccines. The main factor known to determine their delivery efficiency is the pKa of the LNP containing an ionizable lipid. Herein, we report a method that can predict the LNP pKa from the structure of the ionizable lipid. We used theoretical, NMR, fluorescent-dye binding, and electrophoretic mobility methods to comprehensively measure protonation of both the ionizable lipid and the formulated LNP. The pKa of the ionizable lipid was 2-3 units higher than the pKa of the LNP primarily due to proton solvation energy differences between the LNP and aqueous medium. We exploited these results to explain a wide range of delivery efficiencies in vitro and in vivo for intramuscular (IM) and intravascular (IV) administration of different ionizable lipids at escalating ionizable lipid-to-mRNA ratios in the LNP. In addition, we determined that more negatively charged LNPs exhibit higher off-target systemic expression of mRNA in the liver following IM administration. This undesirable systemic off-target expression of mRNA-LNP vaccines could be minimized through appropriate design of the ionizable lipid and LNP.


Asunto(s)
Expresión Génica , Iones/química , Lípidos/química , Nanopartículas/química , ARN Mensajero/química , ARN Mensajero/genética , Administración Intravenosa , Animales , Composición de Medicamentos , Humanos , Concentración de Iones de Hidrógeno , Inyecciones Intramusculares , Ratones , Estructura Molecular , Nanopartículas/ultraestructura , ARN Mensajero/administración & dosificación , ARN Mensajero/farmacocinética , Análisis Espectral , Distribución Tisular , Transfección
7.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33431677

RESUMEN

Hepatitis C virus (HCV) is a major worldwide health burden, and a preventive vaccine is needed for global control or eradication of this virus. A substantial hurdle to an effective HCV vaccine is the high variability of the virus, leading to immune escape. The E1E2 glycoprotein complex contains conserved epitopes and elicits neutralizing antibody responses, making it a primary target for HCV vaccine development. However, the E1E2 transmembrane domains that are critical for native assembly make it challenging to produce this complex in a homogenous soluble form that is reflective of its state on the viral envelope. To enable rational design of an E1E2 vaccine, as well as structural characterization efforts, we have designed a soluble, secreted form of E1E2 (sE1E2). As with soluble glycoprotein designs for other viruses, it incorporates a scaffold to enforce assembly in the absence of the transmembrane domains, along with a furin cleavage site to permit native-like heterodimerization. This sE1E2 was found to assemble into a form closer to its expected size than full-length E1E2. Preservation of native structural elements was confirmed by high-affinity binding to a panel of conformationally specific monoclonal antibodies, including two neutralizing antibodies specific to native E1E2 and to its primary receptor, CD81. Finally, sE1E2 was found to elicit robust neutralizing antibodies in vivo. This designed sE1E2 can both provide insights into the determinants of native E1E2 assembly and serve as a platform for production of E1E2 for future structural and vaccine studies, enabling rational optimization of an E1E2-based antigen.


Asunto(s)
Hepacivirus/efectos de los fármacos , Anticuerpos contra la Hepatitis C/biosíntesis , Hepatitis C/prevención & control , Proteínas del Envoltorio Viral/inmunología , Vacunas contra Hepatitis Viral/inmunología , Animales , Anticuerpos Monoclonales/biosíntesis , Anticuerpos Neutralizantes/biosíntesis , Mapeo Epitopo , Epítopos/química , Epítopos/inmunología , Femenino , Expresión Génica , Hepacivirus/inmunología , Hepacivirus/patogenicidad , Hepatitis C/inmunología , Hepatitis C/patología , Hepatitis C/virología , Humanos , Inmunogenicidad Vacunal , Ratones , Modelos Moleculares , Unión Proteica , Conformación Proteica , Ingeniería de Proteínas/métodos , Multimerización de Proteína , Receptores Virales/genética , Receptores Virales/inmunología , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Solubilidad , Tetraspanina 28/genética , Tetraspanina 28/inmunología , Vacunación , Proteínas del Envoltorio Viral/administración & dosificación , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética , Vacunas contra Hepatitis Viral/administración & dosificación , Vacunas contra Hepatitis Viral/química , Vacunas contra Hepatitis Viral/genética
8.
J Chem Inf Model ; 60(4): 2091-2099, 2020 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-32131596

RESUMEN

Induction of cytochrome P450 isoform 3A4 via activation of the pregnane xenobiotic receptor (PXR) is a concern for pharmaceutical discovery and development, as it can lead to drug-drug interactions. We present a novel molecular descriptor, the smallest maximum intramolecular distance (SMID), which is correlated with PXR activation, and a method for using the SMID descriptor to guide discovery chemists in modifying lead compounds to decrease PXR activation.


Asunto(s)
Receptores de Esteroides , Citocromo P-450 CYP3A , Interacciones Farmacológicas , Receptor X de Pregnano , Pregnanos , Xenobióticos/toxicidad
9.
Proc Natl Acad Sci U S A ; 117(2): 1049-1058, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31896582

RESUMEN

Targeting Clostridium difficile infection is challenging because treatment options are limited, and high recurrence rates are common. One reason for this is that hypervirulent C. difficile strains often have a binary toxin termed the C. difficile toxin, in addition to the enterotoxins TsdA and TsdB. The C. difficile toxin has an enzymatic component, termed CDTa, and a pore-forming or delivery subunit termed CDTb. CDTb was characterized here using a combination of single-particle cryoelectron microscopy, X-ray crystallography, NMR, and other biophysical methods. In the absence of CDTa, 2 di-heptamer structures for activated CDTb (1.0 MDa) were solved at atomic resolution, including a symmetric (SymCDTb; 3.14 Å) and an asymmetric form (AsymCDTb; 2.84 Å). Roles played by 2 receptor-binding domains of activated CDTb were of particular interest since the receptor-binding domain 1 lacks sequence homology to any other known toxin, and the receptor-binding domain 2 is completely absent in other well-studied heptameric toxins (i.e., anthrax). For AsymCDTb, a Ca2+ binding site was discovered in the first receptor-binding domain that is important for its stability, and the second receptor-binding domain was found to be critical for host cell toxicity and the di-heptamer fold for both forms of activated CDTb. Together, these studies represent a starting point for developing structure-based drug-design strategies to target the most severe strains of C. difficile.


Asunto(s)
ADP Ribosa Transferasas/química , ADP Ribosa Transferasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Clostridioides difficile/metabolismo , Enterotoxinas/química , Enterotoxinas/metabolismo , ADP Ribosa Transferasas/genética , Animales , Proteínas Bacterianas/genética , Sitios de Unión , Fenómenos Biofísicos , Chlorocebus aethiops , Microscopía por Crioelectrón , Cristalografía por Rayos X , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Dominios Proteicos , Células Vero
10.
Sci Rep ; 9(1): 8864, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31221961

RESUMEN

The engineering of immunoglobulin-G molecules (IgGs) is of wide interest for improving therapeutics, for example by modulating the activity or multiplexing the specificity of IgGs to recognize more than one antigen. Optimization of engineered IgG requires knowledge of three-dimensional (3D) structure of synthetic IgG. However, due to flexible nature of the molecules, their structural characterization is challenging. Here, we use our reported individual-particle electron tomography (IPET) method with optimized negative-staining (OpNS) for direct 3D reconstruction of individual IgG hole-hole homodimer molecules. The hole-hole homodimer is an undesired variant generated during the production of a bispecific antibody using the knob-into-hole heterodimer technology. A total of 64 IPET 3D density maps at ~15 Å resolutions were reconstructed from 64 individual molecules, revealing 64 unique conformations. In addition to the known Y-shaped conformation, we also observed an unusual X-shaped conformation. The 3D structure of the X-shaped conformation contributes to our understanding of the structural details of the interaction between two heavy chains in the Fc domain. The IPET approach, as an orthogonal technique to characterize the 3D structure of therapeutic antibodies, provides insight into the 3D structural variety and dynamics of heterogeneous IgG molecules.


Asunto(s)
Anticuerpos Biespecíficos/química , Imagenología Tridimensional/métodos , Inmunoglobulina G/química , Imagen Molecular/métodos , Tomografía con Microscopio Electrónico , Coloración Negativa , Conformación Proteica , Multimerización de Proteína
11.
Prosthet Orthot Int ; 43(2): 221-226, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30168357

RESUMEN

BACKGROUND:: An inverted pendulum model represents the mechanical function of able-bodied individuals walking accurately, with centre of mass height and forward velocity data plotting as sinusoidal curves, 180° out of phase. OBJECTIVES:: This study investigated whether the inverted pendulum model represented level gait in individuals with a unilateral transfemoral amputation. STUDY DESIGN:: Controlled trial. METHODS:: Kinematic and kinetic data from 10 individuals with unilateral transfemoral amputation and 15 able-bodied participants were recorded during level walking. RESULTS:: During level walking, the inverted pendulum model described able-bodied gait well throughout the gait cycle, with median relative time shifts between centre of mass height and velocity maxima and minima between 1.2% and 1.8% of gait cycle. In the group with unilateral transfemoral amputation, the relative time shift was significantly increased during the prosthetic-limb initial double-limb support phase by 6.3%. CONCLUSION:: The gait of individuals with unilateral transfemoral amputation shows deviation from a synchronous inverted pendulum model during prosthetic-limb stance. The reported divergence may help explain such individuals' increased metabolic cost of gait. Temporal divergence of inverted pendulum behaviour could potentially be utilised as a tool to assess the efficacy of prosthetic device prescription. CLINICAL RELEVANCE: The size of the relative time shifts between centre of mass height and velocity maxima and minima could potentially be used as a tool to quantify the efficacy of innovative prosthetic device design features aimed at reducing the metabolic cost of walking and improving gait efficiency in individuals with amputation.


Asunto(s)
Amputación Quirúrgica/métodos , Amputados/rehabilitación , Fémur/cirugía , Marcha/fisiología , Equilibrio Postural/fisiología , Adulto , Amputación Quirúrgica/rehabilitación , Fenómenos Biomecánicos , Metabolismo Energético/fisiología , Femenino , Análisis de la Marcha , Humanos , Masculino , Modelos Teóricos , Estándares de Referencia
12.
Front Microbiol ; 10: 3152, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32038584

RESUMEN

In an effort to control aflatoxin contamination in food and/or feed grains, a segment of research has focused on host resistance to eliminate aflatoxin from susceptible crops, including maize. To this end, screening tools are key to identifying resistant maize genotypes. The traditional field screening techniques, the kernel screening laboratory assay (KSA), and analytical methods (e.g., ELISA) used for evaluating corn lines for resistance to fungal invasion, all ultimately require sample destruction. A technological advancement on the basic BGYF presumptive screening test, fluorescence hyperspectral imaging offers an option for non-destructive and rapid image-based screening. The present study aimed to differentiate fluorescence spectral signatures of representative resistant and susceptible corn hybrids infected by a toxigenic (SRRC-AF13) and an atoxigenic (SRRC-AF36) strain of Aspergillus flavus, at several time points (5, 7, 10, and 14 days), in order to evaluate fluorescence hyperspectral imaging as a viable technique for early, non-invasive aflatoxin screening in resistant and susceptible corn lines. The study utilized the KSA to promote fungal growth and aflatoxin production in corn kernels inoculated under laboratory conditions and to provide actual aflatoxin values to relate with the imaging data. Each time point consisted of 78 kernels divided into four groups (30-susceptible, 30-resistant, 9-susceptible control, and 9-resistant control), per inoculum. On specified days, kernels were removed from the incubator and dried at 60°C to terminate fungal growth. Dry kernels were imaged with a VNIR hyperspectral sensor (image spectral range of 400-1000 nm), under UV excitation centered at 365 nm. Following imaging, kernels were submitted for the chemical AflaTest assay (VICAM). Fluorescence emissions were compared for all samples over 14 days. Analysis of strain differences separating the fluorescence emission peaks of resistant from the susceptible strain indicated that the emission peaks of the resistant strain and the susceptible strains differed significantly (p < 0.01) from each other, and there was a significant difference in fluorescence intensity between the treated and control kernels of both strains. These results indicate a viable role of fluorescence hyperspectral imaging for non-invasive screening of maize lines with divergent resistance to invasion by aflatoxigenic fungi.

13.
Protein Sci ; 27(3): 780-789, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29266475

RESUMEN

Nanolipoprotein particles (NLPs), composed of membrane scaffold proteins and lipids, have been used to support membrane proteins in a native-like bilayer environment for biochemical and structural studies. Traditionally, these NLPs have been prepared by the controlled removal of detergent from a detergent-solubilized protein-lipid mixture. Recently, an alternative method has been developed using direct cell-free expression of the membrane scaffold protein in the presence of preformed lipid vesicles, which spontaneously produces NLPs without the need for detergent at any stage. Using SANS/SAXS, we show here that NLPs produced by this cell-free expression method are structurally indistinguishable from those produced using detergent removal methodologies. This further supports the utility of single step cell-free methods for the production of lipid binding proteins. In addition, detailed structural information describing these NLPs can be obtained by fitting a capped core-shell cylinder type model to all SANS/SAXS data simultaneously.


Asunto(s)
Membrana Dobles de Lípidos/química , Proteínas de la Membrana/química , Nanopartículas/química , Sistema Libre de Células , Detergentes/química , Difracción de Neutrones , Dispersión del Ángulo Pequeño , Difracción de Rayos X
14.
Front Microbiol ; 8: 1718, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28966606

RESUMEN

Non-invasive, easy to use and cost-effective technology offers a valuable alternative for rapid detection of carcinogenic fungal metabolites, namely aflatoxins, in commodities. One relatively recent development in this area is the use of spectral technology. Fluorescence hyperspectral imaging, in particular, offers a potential rapid and non-invasive method for detecting the presence of aflatoxins in maize infected with the toxigenic fungus Aspergillus flavus. Earlier studies have shown that whole maize kernels contaminated with aflatoxins exhibit different spectral signatures from uncontaminated kernels based on the external fluorescence emission of the whole kernels. Here, the effect of time on the internal fluorescence spectral emissions from cross-sections of kernels infected with toxigenic and atoxigenic A. flavus, were examined in order to elucidate the interaction between the fluorescence signals emitted by some aflatoxin contaminated maize kernels and the fungal invasion resulting in the production of aflatoxins. First, the difference in internal fluorescence emissions between cross-sections of kernels incubated in toxigenic and atoxigenic inoculum was assessed. Kernels were inoculated with each strain for 5, 7, and 9 days before cross-sectioning and imaging. There were 270 kernels (540 halves) imaged, including controls. Second, in a different set of kernels (15 kernels/group; 135 total), the germ of each kernel was separated from the endosperm to determine the major areas of aflatoxin accumulation and progression over nine growth days. Kernels were inoculated with toxigenic and atoxigenic fungal strains for 5, 7, and 9 days before the endosperm and germ were separated, followed by fluorescence hyperspectral imaging and chemical aflatoxin determination. A marked difference in fluorescence intensity was shown between the toxigenic and atoxigenic strains on day nine post-inoculation, which may be a useful indicator of the location of aflatoxin contamination. This finding suggests that both, the fluorescence peak shift and intensity as well as timing, may be essential in distinguishing toxigenic and atoxigenic fungi based on spectral features. Results also reveal a possible preferential difference in the internal colonization of maize kernels between the toxigenic and atoxigenic strains of A. flavus suggesting a potential window for differentiating the strains based on fluorescence spectra at specific time points.

15.
Eur J Appl Physiol ; 117(5): 867-879, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28349262

RESUMEN

PURPOSE: In fresh muscle, supplementation with the rate-limiting precursor of carnosine, ß-alanine (BA), results in a decline in muscle half-relaxation time (HRT) potentially via alterations to calcium (Ca2+) handling. Accumulation of hydrogen cation (H+) has been shown to impact Ca2+ signalling during muscular contraction, carnosine has the potential to serve as a cytoplasmic regulator of Ca2+ and H+ coupling, since it binds to both ions. The present study examined the effect of BA supplementation on intrinsic in-vivo isometric knee extensor force production and muscle contractility in both fresh and fatigued human skeletal muscle assessed during voluntary and electrically evoked (nerve and superficial muscle stimulation) contractions. METHODS: Twenty-three males completed two experimental sessions, pre- and post- 28 day supplementation with 6.4 g.day-1 of BA (n = 12) or placebo (PLA; n = 11). Isometric force was recorded during a series of voluntary and electrically evoked knee extensor contractions. RESULTS: BA supplementation had no effect on voluntary or electrically evoked isometric force production, or twitch electromechanical delay and time-to-peak tension. There was a significant decline in muscle HRT in fresh and fatigued muscle conditions during both resting (3 ± 13%; 19 ± 26%) and potentiated (1 ± 15%; 2 ± 20%) twitch contractions. CONCLUSIONS: The mechanism for reduced HRT in fresh and fatigued skeletal muscle following BA supplementation is unclear. Due to the importance of muscle relaxation on total energy consumption, especially during short, repeated contractions, BA supplementation may prove to be beneficial in minimising contractile slowing induced by fatigue. TRIAL REGISTRATION: The trial is registered with Clinicaltrials.gov, ID number NCT02819505.


Asunto(s)
Relajación Muscular/efectos de los fármacos , Músculo Esquelético/fisiología , beta-Alanina/farmacología , Humanos , Contracción Isométrica , Masculino , Fatiga Muscular , Músculo Esquelético/efectos de los fármacos , Adulto Joven , beta-Alanina/administración & dosificación , beta-Alanina/efectos adversos
16.
Ergonomics ; 60(9): 1255-1260, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27875943

RESUMEN

The purpose of this study was to investigate how altering surfboard volume (BV) affects energy expenditure during paddling. Twenty surfers paddled in a swim flume on five surfboards in random order twice. All surfboards varied only in thickness and ranged in BV from 28.4 to 37.4 L. Measurements of heart rate (HR), oxygen consumption (VO2), pitch angle, roll angle and paddling cadence were measured. VO2 and HR significantly decreased on thicker boards [VO2: r = -0.984, p = 0.003; HR: r = -0.972, p = 0.006]. There was also a significant decrease in pitch and roll angles on thicker boards [Pitch: r = -0.995, p < 0.001; Roll: r = -0.911, p = 0.031]. Results from this study suggest that increasing BV reduces the metabolic cost of paddling as a result of lower pitch and roll angles, thus providing mechanical evidence for increased paddling efficiency on surfboards with more volume. Practioner Summary: This study investigated the impact of surfboard volume on energy expenditure during paddling. Results from this study suggest that increasing surfboard volume reduces the metabolic cost of paddling as a result of lower pitch and roll angles, thus providing mechanical evidence for increased paddling efficiency on surfboards with more volume.


Asunto(s)
Metabolismo Energético , Diseño de Equipo , Equipo Deportivo/estadística & datos numéricos , Deportes Acuáticos/fisiología , Adulto , Femenino , Frecuencia Cardíaca/fisiología , Humanos , Masculino , Consumo de Oxígeno/fisiología , Método Simple Ciego
17.
Methods Enzymol ; 565: 147-65, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26577731

RESUMEN

It is often necessary to obtain isotopically labeled proteins containing (15)N, (13)C, or (2)H for nuclear magnetic resonance; and (2)H for small-angle neutron scattering or neutron diffraction studies. To achieve uniform isotopic labeling, protein expression is most commonly performed in Escherichia coli or yeast using labeled media. However, proteins from extreme halophiles sometimes require a cellular environment with high ionic strength and cannot be heterologously expressed in E. coli or yeast in functional form. We present here methods for the cultivation of Halobacterium salinarum in isotopically labeled rich media, using commercially available isotopically labeled hydrolysates. The methods described here are both technically simple and relatively inexpensive.


Asunto(s)
Proteínas Arqueales/química , Halobacterium salinarum/química , Marcaje Isotópico , Halobacterium salinarum/crecimiento & desarrollo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
18.
Genome Announc ; 3(2)2015 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-25883274

RESUMEN

Aflatoxin contamination of food and livestock feed results in significant annual crop losses internationally. Aspergillus flavus is the major fungus responsible for this loss. Additionally, A. flavus is the second leading cause of aspergillosis in immunocompromised human patients. Here, we report the genome sequence of strain NRRL 3357.

19.
J Integr Plant Biol ; 57(3): 271-83, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25251325

RESUMEN

Plant ß-1,3-glucanases are members of the pathogenesis-related protein 2 (PR-2) family, which is one of the 17 PR protein families and plays important roles in biotic and abiotic stress responses. One of the differentially expressed proteins (spot 842) identified in a recent proteomic comparison between five pairs of closely related maize (Zea mays L.) lines differing in aflatoxin resistance was further investigated in the present study. Here, the corresponding cDNA was cloned from maize and designated as ZmGns. ZmGns encodes a protein of 338 amino acids containing a potential signal peptide. The expression of ZmGns was detectible in all tissues studied with the highest level in silks. ZmGns was significantly induced by biotic stresses including three bacteria and the fungus Aspergillus flavus. ZmGns was also induced by most abiotic stresses tested and growth hormones including salicylic acid. In vivo, ZmGns showed a significant inhibitory activity against the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 and fungal pathogen Botrytis cinerea when it overexpressed in Arabidopsis. Its high level of expression in the silk tissue and its induced expression by phytohormone treatment, as well as by bacterial and fungal infections, suggest it plays a complex role in maize growth, development, and defense.


Asunto(s)
Antiinfecciosos/farmacología , Endo-1,3(4)-beta-Glucanasa/genética , Estrés Fisiológico/efectos de los fármacos , Zea mays/enzimología , Secuencia de Aminoácidos , Antifúngicos/farmacología , Arabidopsis/genética , Arabidopsis/microbiología , Aspergillus/efectos de los fármacos , Botrytis/efectos de los fármacos , Clonación Molecular , Endo-1,3(4)-beta-Glucanasa/química , Endo-1,3(4)-beta-Glucanasa/metabolismo , Escherichia coli/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Especificidad de Órganos/efectos de los fármacos , Especificidad de Órganos/genética , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas/farmacología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Plantas Modificadas Genéticamente , Proteínas Recombinantes/metabolismo , Ácido Salicílico/farmacología , Alineación de Secuencia , Análisis de Secuencia de ADN , Especificidad por Sustrato/efectos de los fármacos , Temperatura , Zea mays/efectos de los fármacos , Zea mays/genética , Zea mays/microbiología
20.
Protein Expr Purif ; 104: 92-102, 2014 12.
Artículo en Inglés | MEDLINE | ID: mdl-25261717

RESUMEN

Patched (Ptc) is a twelve-pass transmembrane protein that functions as a receptor for the Hedgehog (Hh) family of morphogens. In addition to Ptc, several accessory proteins including the CDO/Ihog family of co-receptors are necessary for proper Hh signaling. Structures of Hh proteins bound to members of the CDO/Ihog family are known, but the nature of the full Hh receptor complex is not well understood. We have expressed the Drosophila Patched and Mouse Patched-1 proteins in Sf9 cells and find that Sonic Hedgehog will bind to Mouse Patched-1 in isolated Sf9 cell membranes but that purified, detergent-solubilized Ptc proteins do not interact strongly with cognate Hh and CDO/Ihog homologs. These results may reflect a nonnative conformation of detergent-solubilized Ptc or that an additional factor or factors lost during purification are required for high-affinity Ptc binding to Hh.


Asunto(s)
Detergentes/química , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas Hedgehog/química , Glicoproteínas de Membrana/química , Receptor Patched-1/genética , Receptores de Superficie Celular/química , Receptores de Superficie Celular/genética , Animales , Baculoviridae/genética , Proteínas de Drosophila/aislamiento & purificación , Ratones , Receptor Patched-1/química , Receptor Patched-1/aislamiento & purificación , Unión Proteica , Conformación Proteica , Receptores de Superficie Celular/aislamiento & purificación , Células Sf9 , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...