Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 7093, 2023 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-37925433

RESUMEN

Human antigen R (HuR) is a ubiquitously expressed RNA-binding protein, which functions as an RNA regulator. Overexpression of HuR correlates with high grade tumours and poor patient prognosis, implicating it as an attractive therapeutic target. However, an effective small molecule antagonist to HuR for clinical use remains elusive. Here, a single domain antibody (VHH) that binds HuR with low nanomolar affinity was identified and shown to inhibit HuR binding to RNA. This VHH was used to engineer a TRIM21-based biological PROTAC (bioPROTAC) that could degrade endogenous HuR. Significantly, HuR degradation reverses the tumour-promoting properties of cancer cells in vivo by altering the HuR-regulated proteome, highlighting the benefit of HuR degradation and paving the way for the development of HuR-degrading therapeutics. These observations have broader implications for degrading intractable therapeutic targets, with bioPROTACs presenting a unique opportunity to explore targeted-protein degradation through a modular approach.


Asunto(s)
Proteína 1 Similar a ELAV , Neoplasias , Quimera Dirigida a la Proteólisis , Humanos , Proteína 1 Similar a ELAV/genética , Proteína 1 Similar a ELAV/metabolismo , ARN , Proteínas de Unión al ARN/metabolismo
2.
Nat Commun ; 14(1): 2160, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-37061529

RESUMEN

TRIM proteins are the largest family of E3 ligases in mammals. They include the intracellular antibody receptor TRIM21, which is responsible for mediating targeted protein degradation during Trim-Away. Despite their importance, the ubiquitination mechanism of TRIM ligases has remained elusive. Here we show that while Trim-Away activation results in ubiquitination of both ligase and substrate, ligase ubiquitination is not required for substrate degradation. N-terminal TRIM21 RING ubiquitination by the E2 Ube2W can be inhibited by N-terminal acetylation, but this doesn't prevent substrate ubiquitination nor degradation. Instead, uncoupling ligase and substrate degradation prevents ligase recycling and extends functional persistence in cells. Further, Trim-Away degrades substrates irrespective of whether they contain lysines or are N-terminally acetylated, which may explain the ability of TRIM21 to counteract fast-evolving pathogens and degrade diverse substrates.


Asunto(s)
Lisina , Ubiquitina-Proteína Ligasas , Animales , Lisina/metabolismo , Ubiquitinación , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Procesamiento Proteico-Postraduccional , Proteolisis , Mamíferos/metabolismo
3.
Viruses ; 14(8)2022 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-35893676

RESUMEN

TRIM7 catalyzes the ubiquitination of multiple substrates with unrelated biological functions. This cross-reactivity is at odds with the specificity usually displayed by enzymes, including ubiquitin ligases. Here we show that TRIM7's extreme substrate promiscuity is due to a highly unusual binding mechanism, in which the PRYSPRY domain captures any ligand with a C-terminal helix that terminates in a hydrophobic residue followed by a glutamine. Many of the non-structural proteins found in RNA viruses contain C-terminal glutamines as a result of polyprotein cleavage by 3C protease. This viral processing strategy generates novel substrates for TRIM7 and explains its ability to inhibit Coxsackie virus and norovirus replication. In addition to viral proteins, cellular proteins such as glycogenin have evolved C-termini that make them a TRIM7 substrate. The 'helix-ΦQ' degron motif recognized by TRIM7 is reminiscent of the N-end degron system and is found in ~1% of cellular proteins. These features, together with TRIM7's restricted tissue expression and lack of immune regulation, suggest that viral restriction may not be its physiological function.


Asunto(s)
Infecciones por Caliciviridae , Glutamina , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas , Proteasas Virales 3C , Enterovirus , Humanos , Norovirus , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Virales/genética
4.
EMBO J ; 40(17): e108588, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34323299

RESUMEN

The humoral immune response to SARS-CoV-2 results in antibodies against spike (S) and nucleoprotein (N). However, whilst there are widely available neutralization assays for S antibodies, there is no assay for N-antibody activity. Here, we present a simple in vitro method called EDNA (electroporated-antibody-dependent neutralization assay) that provides a quantitative measure of N-antibody activity in unpurified serum from SARS-CoV-2 convalescents. We show that N antibodies neutralize SARS-CoV-2 intracellularly and cell-autonomously but require the cytosolic Fc receptor TRIM21. Using EDNA, we show that low N-antibody titres can be neutralizing, whilst some convalescents possess serum with high titres but weak activity. N-antibody and N-specific T-cell activity correlates within individuals, suggesting N antibodies may protect against SARS-CoV-2 by promoting antigen presentation. This work highlights the potential benefits of N-based vaccines and provides an in vitro assay to allow the antibodies they induce to be tested.


Asunto(s)
Anticuerpos Neutralizantes/aislamiento & purificación , Anticuerpos Antivirales/aislamiento & purificación , COVID-19/sangre , SARS-CoV-2/aislamiento & purificación , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19/virología , Humanos , Nucleoproteínas/sangre , Nucleoproteínas/inmunología , SARS-CoV-2/patogenicidad
5.
J Cell Biol ; 220(7)2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33929514

RESUMEN

During mitosis, sister chromatids attach to microtubules from opposite poles, called biorientation. Sister chromatid cohesion resists microtubule forces, generating tension, which provides the signal that biorientation has occurred. How tension silences the surveillance pathways that prevent cell cycle progression and correct erroneous kinetochore-microtubule attachments remains unclear. Here we show that SUMOylation dampens error correction to allow stable sister kinetochore biorientation and timely anaphase onset. The Siz1/Siz2 SUMO ligases modify the pericentromere-localized shugoshin (Sgo1) protein before its tension-dependent release from chromatin. Sgo1 SUMOylation reduces its binding to protein phosphatase 2A (PP2A), and weakening of this interaction is important for stable biorientation. Unstable biorientation in SUMO-deficient cells is associated with persistence of the chromosome passenger complex (CPC) at centromeres, and SUMOylation of CPC subunit Bir1 also contributes to timely anaphase onset. We propose that SUMOylation acts in a combinatorial manner to facilitate dismantling of the error correction machinery within pericentromeres and thereby sharpen the metaphase-anaphase transition.


Asunto(s)
Proteínas Portadoras/genética , Segregación Cromosómica/genética , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligasas/genética , Cromátides/genética , Humanos , Cinetocoros , Mitosis/genética , Proteína Fosfatasa 2/genética , Saccharomyces cerevisiae/genética , Huso Acromático/genética , Sumoilación/genética
6.
Nat Commun ; 12(1): 1220, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33619271

RESUMEN

Attachment of ubiquitin (Ub) to proteins is one of the most abundant and versatile of all posttranslational modifications and affects outcomes in essentially all physiological processes. RING E3 ligases target E2 Ub-conjugating enzymes to the substrate, resulting in its ubiquitination. However, the mechanism by which a ubiquitin chain is formed on the substrate remains elusive. Here we demonstrate how substrate binding can induce a specific RING topology that enables self-ubiquitination. By analyzing a catalytically trapped structure showing the initiation of TRIM21 RING-anchored ubiquitin chain elongation, and in combination with a kinetic study, we illuminate the chemical mechanism of ubiquitin conjugation. Moreover, biochemical and cellular experiments show that the topology found in the structure can be induced by substrate binding. Our results provide insights into ubiquitin chain formation on a structural, biochemical and cellular level with broad implications for targeted protein degradation.


Asunto(s)
Biocatálisis , Dominios RING Finger , Ubiquitinación , Animales , Femenino , Masculino , Ratones , Modelos Moleculares , Células 3T3 NIH , Proteolisis , Ribonucleoproteínas/química , Especificidad por Sustrato , Ubiquitina/química , Ubiquitina/metabolismo
7.
Nat Struct Mol Biol ; 28(3): 278-289, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33633400

RESUMEN

Trim-Away is a recently developed technology that exploits off-the-shelf antibodies and the RING E3 ligase and cytosolic antibody receptor TRIM21 to carry out rapid protein depletion. How TRIM21 is catalytically activated upon target engagement, either during its normal immune function or when repurposed for targeted protein degradation, is unknown. Here we show that a mechanism of target-induced clustering triggers intermolecular dimerization of the RING domain to switch on the ubiquitination activity of TRIM21 and induce virus neutralization or drive Trim-Away. We harness this mechanism for selective degradation of disease-causing huntingtin protein containing long polyglutamine tracts and expand the Trim-Away toolbox with highly active TRIM21-nanobody chimeras that can also be controlled optogenetically. This work provides a mechanism for cellular activation of TRIM RING ligases and has implications for targeted protein degradation technologies.


Asunto(s)
Proteolisis , Ribonucleoproteínas/metabolismo , Ubiquitinación , Animales , Biocatálisis , Línea Celular , Drosophila melanogaster/citología , Humanos , Proteína Huntingtina/química , Proteína Huntingtina/metabolismo , Ratones , Modelos Moleculares , Optogenética , Péptidos/metabolismo , Unión Proteica , Multimerización de Proteína , Ribonucleoproteínas/química , Ubiquitina-Proteína Ligasas/metabolismo
8.
EMBO J ; 38(21): e101365, 2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31468569

RESUMEN

Inflammasomes are potent innate immune signalling complexes that couple cytokine release with pro-inflammatory cell death. However, pathogens have evolved strategies to evade this cell autonomous system. Here, we show how antibodies combine with innate sensors in primary human macrophages to detect viral infection and activate the inflammasome. Our data demonstrate that antibody opsonisation of virions can activate macrophages in multiple ways. In the first, antibody binding of adenovirus causes lysosomal damage, activating NLRP3 to drive inflammasome formation and IL-1ß release. Importantly, this mechanism enhances virion capture but not infection and is accompanied by cell death, denying the opportunity for viral replication. Unexpectedly, we also find that antibody-coated viruses, which successfully escape into the cytosol, trigger a second system of inflammasome activation. These viruses are intercepted by the cytosolic antibody receptor TRIM21 and the DNA sensor cGAS. Together, these sensors stimulate both NLRP3 inflammasome formation and NFκB activation, driving dose-dependent IL-1ß and TNF secretion, without inducing cell death. Our data highlight the importance of cooperativity between multiple sensing networks to expose viruses to the inflammasome pathway, which is particularly important for how our innate immune system responds to infection in the presence of pre-existing immunity.


Asunto(s)
Infecciones por Adenoviridae/inmunología , Anticuerpos Antivirales/inmunología , Inflamasomas/inmunología , Macrófagos/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Nucleotidiltransferasas/metabolismo , Ribonucleoproteínas/metabolismo , Replicación Viral/inmunología , Adenoviridae/genética , Adenoviridae/inmunología , Infecciones por Adenoviridae/metabolismo , Infecciones por Adenoviridae/virología , Animales , Células Cultivadas , Humanos , Inflamasomas/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Macrófagos/virología , Ratones , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Nucleotidiltransferasas/genética , Ribonucleoproteínas/genética , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
9.
Science ; 364(6447)2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31249032

RESUMEN

Mammalian oocytes segregate chromosomes with a microtubule spindle that lacks centrosomes, but the mechanisms by which acentrosomal spindles are organized and function are largely unclear. In this study, we identify a conserved subcellular structure in mammalian oocytes that forms by phase separation. This structure, which we term the liquid-like meiotic spindle domain (LISD), permeates the spindle poles and forms dynamic protrusions that extend well beyond the spindle. The LISD selectively concentrates multiple microtubule regulatory factors and allows them to diffuse rapidly within the spindle volume. Disruption of the LISD via different means disperses these factors and leads to severe spindle assembly defects. Our data suggest a model whereby the LISD promotes meiotic spindle assembly by serving as a reservoir that sequesters and mobilizes microtubule regulatory factors in proximity to spindle microtubules.


Asunto(s)
Centrosoma/fisiología , Meiosis , Microtúbulos/fisiología , Oocitos/fisiología , Huso Acromático/fisiología , Animales , Aurora Quinasa A/metabolismo , Cadenas Pesadas de Clatrina/metabolismo , Femenino , Proteínas Fetales/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/metabolismo , Células 3T3 NIH
10.
Cell Host Microbe ; 25(4): 617-629.e7, 2019 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-30926239

RESUMEN

The complement system is vital for anti-microbial defense. In the classical pathway, pathogen-bound antibody recruits the C1 complex (C1qC1r2C1s2) that initiates a cleavage cascade involving C2, C3, C4, and C5 and triggering microbial clearance. We demonstrate a C4-dependent antiviral mechanism that is independent of downstream complement components. C4 inhibits human adenovirus infection by directly inactivating the virus capsid. Rapid C4 activation and capsid deposition of cleaved C4b are catalyzed by antibodies via the classical pathway. Capsid-deposited C4b neutralizes infection independent of C2 and C3 but requires C1q antibody engagement. C4b inhibits capsid disassembly, preventing endosomal escape and cytosolic access. C4-deficient mice exhibit heightened viral burdens. Additionally, complement synergizes with the Fc receptor TRIM21 to block transduction by an adenovirus gene therapy vector but is partially restored by Fab virus shielding. These results suggest that the complement system could be altered to prevent virus infection and enhance virus gene therapy efficacy.


Asunto(s)
Infecciones por Adenovirus Humanos/inmunología , Adenovirus Humanos/inmunología , Cápside/metabolismo , Complemento C4/metabolismo , Inmunidad Humoral , Factores Inmunológicos/metabolismo , Inactivación de Virus , Animales , Anticuerpos Antivirales/metabolismo , Línea Celular , Complemento C1/metabolismo , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados , Unión Proteica
11.
Immunity ; 50(4): 1099-1114.e10, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30876876

RESUMEN

Inflammatory bowel disease is a chronic, relapsing condition with two subtypes, Crohn's disease (CD) and ulcerative colitis (UC). Genome-wide association studies (GWASs) in UC implicate a FCGR2A variant that alters the binding affinity of the antibody receptor it encodes, FcγRIIA, for immunoglobulin G (IgG). Here, we aimed to understand the mechanisms whereby changes in FcγRIIA affinity would affect inflammation in an IgA-dominated organ. We found a profound induction of anti-commensal IgG and a concomitant increase in activating FcγR signaling in the colonic mucosa of UC patients. Commensal-IgG immune complexes engaged gut-resident FcγR-expressing macrophages, inducing NLRP3- and reactive-oxygen-species-dependent production of interleukin-1ß (IL-1ß) and neutrophil-recruiting chemokines. These responses were modulated by the FCGR2A genotype. In vivo manipulation of macrophage FcγR signal strength in a mouse model of UC determined the magnitude of intestinal inflammation and IL-1ß-dependent type 17 immunity. The identification of an important contribution of IgG-FcγR-dependent inflammation to UC has therapeutic implications.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Colitis Ulcerosa/inmunología , Microbioma Gastrointestinal/inmunología , Inmunoglobulina G/inmunología , Interleucina-1beta/inmunología , Células Th17/inmunología , Animales , Colitis/inducido químicamente , Colitis/inmunología , Colitis/microbiología , Colitis/patología , Colitis Ulcerosa/microbiología , Colitis Ulcerosa/patología , Sulfato de Dextran/toxicidad , Regulación de la Expresión Génica , Genotipo , Humanos , Inflamación , Interleucina-8/biosíntesis , Interleucina-8/genética , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Macrófagos/inmunología , Ratones , Fagocitos/inmunología , ARN Mensajero/biosíntesis , Especies Reactivas de Oxígeno , Receptores de IgG/biosíntesis , Receptores de IgG/genética , Receptores de IgG/inmunología
12.
Nat Protoc ; 14(8): 2596, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30504914

RESUMEN

In the version of this paper originally published, the present address of W.A. McEwan was accidentally omitted. This address (UK Dementia Research Institute, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK) has now been added as affiliation 3, and the equal-contributions note has been updated to affiliation 4. These changes are reflected in the PDF and HTML versions of the protocol.

13.
Nat Protoc ; 13(10): 2149-2175, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30250286

RESUMEN

Protein depletion is a key approach to understanding the functions of a protein in a biological system. We recently developed the Trim-Away approach in order to rapidly degrade endogenous proteins without prior modification. Trim-Away is based on the ubiquitin ligase and Fc receptor TRIM21, which recognizes antibody-bound proteins and targets them for degradation by the proteasome. In a typical Trim-Away experiment, protein degradation is achieved in three steps: first, introduction of an antibody against the target protein; second, recruitment of endogenous or exogenous/overexpressed TRIM21 to the antibody-bound target protein; and third, proteasome-mediated degradation of the target protein, antibody and TRIM21 complex. Protein degradation by Trim-Away is acute and rapid, with half-lives of ~10-20 min. The major advantages of Trim-Away over other protein degradation methods are that it can be applied to any endogenous protein without prior modification; that it uses conventional antibodies that are widely available; and that it can be applied to a wide range of cell types, including nondividing primary human cells, for which other loss-of-function assays are challenging. In this protocol, we describe the detailed procedures for antibody preparation and delivery in mouse oocytes and cultured cells via microinjection and electroporation. In addition, we provide recommendations for antibody selection and validation, and for the generation of TRIM21-overexpressing cell lines for cases in which endogenous TRIM21 is limited. A typical Trim-Away experiment takes just a few hours.


Asunto(s)
Anticuerpos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas/metabolismo , Proteolisis , Ribonucleoproteínas/metabolismo , Animales , Línea Celular , Células Cultivadas , Electroporación/métodos , Femenino , Humanos , Ratones , Microinyecciones/métodos , Oocitos/metabolismo , Proteínas Recombinantes/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
14.
Nat Commun ; 9(1): 1700, 2018 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-29703891

RESUMEN

Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare, but devastating genetic disease characterized by segmental premature aging, with cardiovascular disease being the main cause of death. Cells from HGPS patients accumulate progerin, a permanently farnesylated, toxic form of Lamin A, disrupting the nuclear shape and chromatin organization, leading to DNA-damage accumulation and senescence. Therapeutic approaches targeting farnesylation or aiming to reduce progerin levels have provided only partial health improvements. Recently, we identified Remodelin, a small-molecule agent that leads to amelioration of HGPS cellular defects through inhibition of the enzyme N-acetyltransferase 10 (NAT10). Here, we show the preclinical data demonstrating that targeting NAT10 in vivo, either via chemical inhibition or genetic depletion, significantly enhances the healthspan in a Lmna G609G HGPS mouse model. Collectively, the data provided here highlights NAT10 as a potential therapeutic target for HGPS.


Asunto(s)
Envejecimiento Prematuro/tratamiento farmacológico , Inestabilidad Genómica/efectos de los fármacos , Hidrazonas/farmacología , Acetiltransferasa A N-Terminal/antagonistas & inhibidores , Progeria/tratamiento farmacológico , Tiazoles/farmacología , Envejecimiento Prematuro/genética , Envejecimiento Prematuro/mortalidad , Envejecimiento Prematuro/patología , Animales , Daño del ADN/efectos de los fármacos , Daño del ADN/genética , Modelos Animales de Enfermedad , Femenino , Inestabilidad Genómica/genética , Humanos , Hidrazonas/uso terapéutico , Estimación de Kaplan-Meier , Lamina Tipo A/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Acetiltransferasa A N-Terminal/genética , Acetiltransferasa A N-Terminal/metabolismo , Acetiltransferasas N-Terminal , Progeria/genética , Progeria/mortalidad , Progeria/patología , Tiazoles/uso terapéutico
15.
Cell ; 171(7): 1692-1706.e18, 2017 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-29153837

RESUMEN

Methods for the targeted disruption of protein function have revolutionized science and greatly expedited the systematic characterization of genes. Two main approaches are currently used to disrupt protein function: DNA knockout and RNA interference, which act at the genome and mRNA level, respectively. A method that directly alters endogenous protein levels is currently not available. Here, we present Trim-Away, a technique to degrade endogenous proteins acutely in mammalian cells without prior modification of the genome or mRNA. Trim-Away harnesses the cellular protein degradation machinery to remove unmodified native proteins within minutes of application. This rapidity minimizes the risk that phenotypes are compensated and that secondary, non-specific defects accumulate over time. Because Trim-Away utilizes antibodies, it can be applied to a wide range of target proteins using off-the-shelf reagents. Trim-Away allows the study of protein function in diverse cell types, including non-dividing primary cells where genome- and RNA-targeting methods are limited.


Asunto(s)
Anticuerpos/química , Bioquímica/métodos , Transporte de Proteínas , Proteolisis , Animales
16.
Proc Natl Acad Sci U S A ; 114(3): 574-579, 2017 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-28049840

RESUMEN

Alzheimer's disease (AD) and other neurodegenerative disorders are associated with the cytoplasmic aggregation of microtubule-associated protein tau. Recent evidence supports transcellular transfer of tau misfolding (seeding) as the mechanism of spread within an affected brain, a process reminiscent of viral infection. However, whereas microbial pathogens can be recognized as nonself by immune receptors, misfolded protein assemblies evade detection, as they are host-derived. Here, we show that when misfolded tau assemblies enter the cell, they can be detected and neutralized via a danger response mediated by tau-associated antibodies and the cytosolic Fc receptor tripartite motif protein 21 (TRIM21). We developed fluorescent, morphology-based seeding assays that allow the formation of pathological tau aggregates to be measured in situ within 24 h in the presence of picomolar concentrations of tau seeds. We found that anti-tau antibodies accompany tau seeds into the cell, where they recruit TRIM21 shortly after entry. After binding, TRIM21 neutralizes tau seeds through the activity of the proteasome and the AAA ATPase p97/VCP in a similar manner to infectious viruses. These results establish that intracellular antiviral immunity can be redirected against host-origin endopathogens involved in neurodegeneration.


Asunto(s)
Receptores Fc/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas tau/metabolismo , Animales , Anticuerpos Neutralizantes/metabolismo , Células Cultivadas , Citosol/metabolismo , Humanos , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Degeneración Nerviosa/inmunología , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/prevención & control , Neuronas/inmunología , Neuronas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Agregado de Proteínas , Agregación Patológica de Proteínas/inmunología , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/prevención & control , Deficiencias en la Proteostasis/metabolismo , Deficiencias en la Proteostasis/prevención & control , Receptores Fc/deficiencia , Receptores Fc/genética , Ribonucleoproteínas/deficiencia , Ribonucleoproteínas/genética , Proteínas tau/química , Proteínas tau/inmunología
17.
Nat Commun ; 6: 7217, 2015 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-26147444

RESUMEN

Assembly of a bipolar microtubule spindle is essential for accurate chromosome segregation. In somatic cells, spindle bipolarity is determined by the presence of exactly two centrosomes. Remarkably, mammalian oocytes do not contain canonical centrosomes. This study reveals that mouse oocytes assemble a bipolar spindle by fragmenting multiple acentriolar microtubule-organizing centres (MTOCs) into a high number of small MTOCs to be able to then regroup and merge them into two equal spindle poles. We show that MTOCs are fragmented in a three-step process. First, PLK1 triggers a decondensation of the MTOC structure. Second, BicD2-anchored dynein stretches the MTOCs into fragmented ribbons along the nuclear envelope. Third, KIF11 further fragments the MTOCs following nuclear envelope breakdown so that they can be evenly distributed towards the two spindle poles. Failure to fragment MTOCs leads to defects in spindle assembly, which delay chromosome individualization and congression, putting the oocyte at risk of aneuploidy.


Asunto(s)
Centro Organizador de los Microtúbulos/metabolismo , Oocitos/fisiología , Huso Acromático/fisiología , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , División del Núcleo Celular/fisiología , Centrosoma/fisiología , Regulación de la Expresión Génica/fisiología , Cinesinas/genética , Cinesinas/metabolismo , Ratones , Microscopía , Oocitos/citología
18.
Elife ; 3: e01374, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24497542

RESUMEN

To protect against aneuploidy, chromosomes must attach to microtubules from opposite poles ('biorientation') prior to their segregation during mitosis. Biorientation relies on the correction of erroneous attachments by the aurora B kinase, which destabilizes kinetochore-microtubule attachments that lack tension. Incorrect attachments are also avoided because sister kinetochores are intrinsically biased towards capture by microtubules from opposite poles. Here, we show that shugoshin acts as a pericentromeric adaptor that plays dual roles in biorientation in budding yeast. Shugoshin maintains the aurora B kinase at kinetochores that lack tension, thereby engaging the error correction machinery. Shugoshin also recruits the chromosome-organizing complex, condensin, to the pericentromere. Pericentromeric condensin biases sister kinetochores towards capture by microtubules from opposite poles. Our findings uncover the molecular basis of the bias to sister kinetochore capture and expose shugoshin as a pericentromeric hub controlling chromosome biorientation. DOI: http://dx.doi.org/10.7554/eLife.01374.001.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Centrómero/metabolismo , Segregación Cromosómica , Proteínas de Unión al ADN/metabolismo , Complejos Multiproteicos/metabolismo , Saccharomycetales/fisiología , Saccharomycetales/metabolismo
19.
Nat Rev Mol Cell Biol ; 14(9): 549-62, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23942453

RESUMEN

Fertilization triggers a complex cellular programme that transforms two highly specialized meiotic germ cells, the oocyte and the sperm, into a totipotent mitotic embryo. Linkages between sister chromatids are remodelled to support the switch from reductional meiotic to equational mitotic divisions; the centrosome, which is absent from the egg, is reintroduced; cell division shifts from being extremely asymmetric to symmetric; genomic imprinting is selectively erased and re-established; and protein expression shifts from translational control to transcriptional control. Recent work has started to reveal how this remarkable transition from meiosis to mitosis is achieved.


Asunto(s)
Desarrollo Embrionario/fisiología , Fertilización/fisiología , Meiosis/fisiología , Mitosis/fisiología , Desarrollo Embrionario/genética , Femenino , Fertilización/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Masculino , Meiosis/genética , Mitosis/genética , Óvulo/citología , Óvulo/metabolismo , Espermatozoides/citología , Espermatozoides/metabolismo
20.
Genes Dev ; 23(6): 766-80, 2009 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-19299562

RESUMEN

Chromosome segregation is triggered by separase, an enzyme that cleaves cohesin, the protein complex that holds sister chromatids together. Separase activation requires the destruction of its inhibitor, securin, which occurs only upon the correct attachment of chromosomes to the spindle. However, other mechanisms restrict separase activity to the appropriate window in the cell cycle because cohesin is cleaved in a timely manner in securin-deficient cells. We investigated the mechanism by which the protector protein Shugoshin counteracts cohesin cleavage in budding yeast. We show that Shugoshin can prevent separase activation independently of securin. Instead, PP2A(Cdc55) is essential for Shugoshin-mediated inhibition of separase. Loss of both securin and Cdc55 leads to premature sister chromatid separation, resulting in aneuploidy. We propose that Cdc55 is a separase inhibitor that acts downstream from Shugoshin under conditions where sister chromatids are not under tension.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Ciclo Celular/fisiología , Endopeptidasas/fisiología , Proteínas Nucleares/fisiología , Proteína Fosfatasa 2/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , Aneuploidia , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Células Cultivadas , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/fisiología , Endopeptidasas/genética , Meiosis/fisiología , Mutación , Proteínas Nucleares/genética , Proteína Fosfatasa 2/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Securina , Separasa , Intercambio de Cromátides Hermanas , Cohesinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA