Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 14(2)2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36833200

RESUMEN

Sexual development is a complex process relying on numerous genes. Disruptions in some of these genes are known to cause differences of sexual development (DSDs). Advances in genome sequencing allowed the discovery of new genes implicated in sexual development, such as PBX1. We present here a fetus with a new PBX1 NM_002585.3: c.320G>A,p.(Arg107Gln) variant, presenting with severe DSD along with renal and lung malformations. Using CRISPR-Cas9 gene editing on HEK293T cells, we generated a KD cell line for PBX1. The KD cell line showed reduced proliferation and adhesion properties compared with HEK293T cells. HEK293T and KD cells were then transfected plasmids coding either PBX1 WT or PBX1-320G>A (mutant). WT or mutant PBX1 overexpression rescued cell proliferation in both cell lines. RNA-seq analyses showed less than 30 differentially expressed genes, in ectopic mutant-PBX1-expressing cells compared with WT-PBX1. Among them, U2AF1, encoding a splicing factor subunit, is an interesting candidate. Overall, mutant PBX1 seems to have modest effects compared with WT PBX1 in our model. However, the recurrence of PBX1 Arg107 substitution in patients with closely related phenotypes calls for its impact in human diseases. Further functional studies are needed to explore its effects on cellular metabolism.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Humanos , Células HEK293 , Feto , Desarrollo Sexual , Factor de Transcripción 1 de la Leucemia de Células Pre-B/genética
2.
CRISPR J ; 6(1): 17-31, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36629845

RESUMEN

Ganglioside-monosialic acid (GM1) gangliosidosis, a rare autosomal recessive disorder, is frequently caused by deleterious single nucleotide variants (SNVs) in GLB1 gene. These variants result in reduced ß-galactosidase (ß-gal) activity, leading to neurodegeneration associated with premature death. Currently, no effective therapy for GM1 gangliosidosis is available. Three ongoing clinical trials aim to deliver a functional copy of the GLB1 gene to stop disease progression. In this study, we show that 41% of GLB1 pathogenic SNVs can be replaced by adenine base editors (ABEs). Our results demonstrate that ABE efficiently corrects the pathogenic allele in patient-derived fibroblasts, restoring therapeutic levels of ß-gal activity. Off-target DNA analysis did not detect off-target editing activity in treated patient's cells, except a bystander edit without consequences on ß-gal activity based on 3D structure bioinformatics predictions. Altogether, our results suggest that gene editing might be an alternative strategy to cure GM1 gangliosidosis.


Asunto(s)
Gangliosidosis GM1 , Humanos , Gangliosidosis GM1/terapia , Gangliosidosis GM1/tratamiento farmacológico , beta-Galactosidasa/genética , beta-Galactosidasa/química , beta-Galactosidasa/metabolismo , Edición Génica , Sistemas CRISPR-Cas/genética , Alelos
3.
Appl Environ Microbiol ; 86(18)2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32680868

RESUMEN

Tampons recovered from a cohort of 737 healthy women (median age, 32 years) were analyzed for the presence of Staphylococcus aureus A total of 198 tampons (27%) were colonized by S. aureus, 28 (4%) by a strain producing toxic shock syndrome toxin 1 (TSST-1). S. aureus was detected more frequently in tampons that did not require an applicator for their insertion (74/233 [32%] versus 90/381 [24%]; odds ratio [OR] = 1.51 [95% confidence interval, 1.04 to 2.17]) and in women who used an intrauterine device for contraception (53/155 [34%] versus 145/572 [27%]; OR = 1.53 [95% confidence interval, 1.05 to 2.24]). The S. aureus strains isolated from tampons belonged to 22 different clonal complexes (CCs). The most prevalent CC was CC398 agr1 (n = 57 [27%]), a clone that does not produce superantigenic toxins, followed by CC30 agr3 (n = 27, 13%), producing TSST-1 (24/27 [89%]), the principal clone of S. aureus involved in menstrual toxic shock syndrome (MTSS).IMPORTANCE Menstrual toxic shock syndrome (MTSS) is an uncommon severe acute disease that occurs in healthy menstruating women colonized by TSST-1-producing S. aureus who use intravaginal protection, such as tampons and menstrual cups. The catamenial product collected by the protection serves as a growth medium for S. aureus and allows TSST-1 production. Previous studies evaluated the prevalence of genital colonization by S. aureus by vaginal swabbing, but they did not examine tampon colonization. This study demonstrated a high prevalence of tampon colonization by S. aureus and the presence of the CC30 TSST-1 S. aureus clone responsible for MTSS in tampons from healthy women. The results support the vaginal carriage of this lineage in healthy women. In addition, the higher prevalence of S. aureus within tampons that do not require an applicator indicates a crucial role for handwashing before tampon handling to decrease the risk of tampon contamination.


Asunto(s)
Productos para la Higiene Menstrual/microbiología , Infecciones Estafilocócicas/epidemiología , Staphylococcus aureus/aislamiento & purificación , Adolescente , Adulto , Toxinas Bacterianas/análisis , Femenino , Francia/epidemiología , Humanos , Persona de Mediana Edad , Prevalencia , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/química , Staphylococcus aureus/genética , Adulto Joven
4.
Front Microbiol ; 10: 2450, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31736897

RESUMEN

Acinetobacter baumannii is a multidrug-resistant nosocomial opportunistic pathogen that is becoming a major health threat worldwide. In this study, we have focused on the A. baumannii DSM30011 strain, an environmental isolate that retains many virulence-associated traits. We found that its genome contains two loci encoding for contact-dependent growth inhibition (CDI) systems. These systems serve to kill or inhibit the growth of non-sibling bacteria by delivering toxins into the cytoplasm of target cells, thereby conferring the host strain a significant competitive advantage. We show that one of the two toxins functions as a DNA-damaging enzyme, capable of inducing DNA double-stranded breaks to the chromosome of Escherichia coli strain. The second toxin has unknown catalytic activity but stops the growth of E. coli without bactericidal effect. In our conditions, only one of the CDI systems was highly expressed in the A. baumannii DSM30011 strain and was found to mediate interbacterial competition. Surprisingly, the absence of this CDI system promotes adhesion of A. baumannii DSM30011 to both abiotic and biotic surfaces, a phenotype that differs from previously described CDI systems. Our results suggest that a specific regulation mediated by this A. baumannii DSM30011 CDI system may result in changes in bacterial physiology that repress host cell adhesion and biofilm formation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA