Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 138(19): 6163-70, 2016 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-27111529

RESUMEN

Time-resolved optical spectroscopies reveal multielectron transfer from the biexcitonic state of a CdS quantum dot to an adsorbed tetracationic compound cyclobis(4,4'-(1,4-phenylene) bipyridin-1-ium-1,4-phenylene-bis(methylene)) (ExBox(4+)) to form both the ExBox(3+•) and the doubly reduced ExBox(2(+•)) states from a single laser pulse. Electron transfer in the single-exciton regime occurs in 1 ps. At higher excitation powers the second electron transfer takes ∼5 ps, which leads to a mixture of redox states of the acceptor ligand. The doubly reduced ExBox(2(+•)) state has a lifetime of ∼10 ns, while CdS(+•):ExBox(3+•) recombines with multiple time constants, the longest of which is ∼300 µs. The long-lived charge separation and ability to accumulate multiple charges on ExBox(4+) demonstrate the potential of the CdS:ExBox(4+) complex to serve as a platform for two-electron photocatalysis.

2.
Chemistry ; 20(45): 14690-7, 2014 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-25258209

RESUMEN

Understanding the mechanism of efficient photoinduced electron-transfer processes is essential for developing molecular systems for artificial photosynthesis. Towards this goal, we describe the synthesis of a donor-acceptor dyad comprising a zinc porphyrin donor and a tetracationic cyclobis(paraquat-p-phenylene) (CBPQT(4+) ) acceptor. The X-ray crystal structure of the dyad reveals the formation of a dimeric motif through the intermolecular coordination between the triazole nitrogen and the central Zn metal of two adjacent units of the dyad. Photoinduced electron transfer within the dyad in MeCN was investigated by femtosecond and nanosecond transient absorption spectroscopy, as well as by transient EPR spectroscopy. Photoexcitation of the dyad produced a weakly coupled ZnP(+.) -CBPQT(3+.) spin-correlated radical-ion pair having a τ=146 ns lifetime and a spin-spin exchange interaction of only 0.23 mT. The long radical-ion-pair lifetime results from weak donor-acceptor electronic coupling as a consequence of having nine bonds between the donor and the acceptor, and the reduction in reorganization energy for electron transfer caused by charge dispersal over both paraquat units within CBPQT(3+.) .


Asunto(s)
Metaloporfirinas/química , Paraquat/análogos & derivados , Zinc/química , Materiales Biomiméticos/química , Transporte de Electrón , Modelos Moleculares , Paraquat/química , Procesos Fotoquímicos
3.
Angew Chem Int Ed Engl ; 53(21): 5371-5, 2014 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-24828229

RESUMEN

Molecules capable of accepting and storing multiple electrons are crucial components of artificial photosynthetic systems designed to drive catalysts, such as those used to reduce protons to hydrogen. ExBox(4+), a boxlike cyclophane comprising two π-electron-poor extended viologen units tethered at both ends by two p-xylylene linkers, has been shown previously to accept an electron through space from a photoexcited guest. Herein is an investigation of an alternate, through-bond intramolecular electron-transfer pathway involving ExBox(4+) using a combination of transient absorption and femtosecond stimulated Raman spectroscopy (FSRS). Upon photoexcitation of ExBox(4+), an electron is transferred from one of the p-xylylene linkers to one of the extended viologen units in ca. 240 ps and recombines in ca. 4 ns. A crystal structure of the doubly reduced species ExBox(2+) was obtained.

4.
J Am Chem Soc ; 135(49): 18609-20, 2013 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-24171644

RESUMEN

Motor molecules present in nature convert energy inputs, such as a chemical fuel or incident photons of light, into directed motion and force biochemical systems away from thermal equilibrium. The ability not only to control relative movements of components in molecules but also to drive their components preferentially in one direction relative to each other using versatile stimuli is one of the keys to future technological applications. Herein, we describe a wholly synthetic small-molecule system that, under the influence of chemical reagents, electrical potential, or visible light, undergoes unidirectional relative translational motion. Altering the redox state of a cyclobis(paraquat-p-phenylene) ring simultaneously (i) inverts the relative heights of kinetic barriers presented by the two termini--one a neutral 2-isopropylphenyl group and the other a positively charged 3,5-dimethylpyridinium unit--of a constitutionally asymmetric dumbbell, which can impair the threading/dethreading of a [2]pseudorotaxane, and (ii) controls the ring's affinity for a 1,5-dioxynaphthalene binding site located in the dumbbell's central core. The formation and subsequent dissociation of the [2]pseudorotaxane by passage of the ring over the neutral and positively charged termini of the dumbbell component in one, and only one, direction relatively defined has been demonstrated by (i) spectroscopic ((1)H NMR and UV/vis) means and cyclic voltammetry as well as with (ii) DFT calculations and by (iii) comparison with control compounds in the shape of constitutionally symmetrical [2]pseudorotaxanes, one with two positively charged ends and the other with two neutral ends. The operation of the system relies solely on reversible, yet stable, noncovalent bonding interactions. Moreover, in the presence of a photosensitizer, visible-light energy is the only fuel source that is needed to drive the unidirectional molecular translation, making it feasible to repeat the operation numerous times without the buildup of byproducts.


Asunto(s)
Luz , Proteínas Motoras Moleculares/química
5.
J Phys Chem A ; 117(47): 12438-48, 2013 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-24148089

RESUMEN

Multielectron acceptors are essential components for artificial photosynthetic systems that must deliver multiple electrons to catalysts for solar fuels applications. The recently developed boxlike cyclophane incorporating two extended viologen units joined end-to-end by two p-phenylene linkers-namely, ExBox(4+)-has a potential to be integrated into light-driven systems on account of its ability to complex with π-electron-rich guests such as perylene, which has been utilized to great extent in many light-harvesting applications. Photodriven electron transfer to ExBox(4+) has not previously been investigated, however, and so its properties, following photoreduction, are largely unknown. Here, we investigate the structure and energetics of the various accessible oxidation states of ExBox(4+) using a combination of spectroscopy and computation. In particular, we examine photoinitiated electron transfer from perylene bound within ExBox(4+) (ExBox(4+)⊂perylene) using visible and near-infrared femtosecond transient absorption (fsTA) spectroscopy. The structure and conformational relaxation dynamics of ExBox(3+)⊂perylene(+) are observed with femtosecond stimulated Raman spectroscopy (FSRS). From the fsTA and FSRS spectra, we observe that the central p-phenylene spacer in one of the extended viologen units on one side of the cyclophane becomes more coplanar with its neighboring pyridinium units over the first ∼5 ps after photoreduction. When the steady-state structure of chemically generated ExBox(2+) is investigated using Raman spectroscopy, it is found to have the central p-phenylene rings in both of its extended viologen units rotated to be more coplanar with their neighboring pyridinium units, further underscoring the importance of this subunit in the stabilization of the reduced states of ExBox(4+).

6.
Nat Nanotechnol ; 8(7): 506-11, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23770807

RESUMEN

Periodic dielectric structures are typically integrated with a planar waveguide to create photonic band-edge modes for feedback in one-dimensional distributed feedback lasers and two-dimensional photonic-crystal lasers. Although photonic band-edge lasers are widely used in optics and biological applications, drawbacks include low modulation speeds and diffraction-limited mode confinement. In contrast, plasmonic nanolasers can support ultrafast dynamics and ultrasmall mode volumes. However, because of the large momentum mismatch between their nanolocalized lasing fields and free-space light, they suffer from large radiative losses and lack beam directionality. Here, we report lasing action from band-edge lattice plasmons in arrays of plasmonic nanocavities in a homogeneous dielectric environment. We find that optically pumped, two-dimensional arrays of plasmonic Au or Ag nanoparticles surrounded by an organic gain medium show directional beam emission (divergence angle <1.5° and linewidth <1.3 nm) characteristic of lasing action in the far-field, and behave as arrays of nanoscale light sources in the near-field. Using a semi-quantum electromagnetic approach to simulate the active optical responses, we show that lasing is achieved through stimulated energy transfer from the gain to the band-edge lattice plasmons in the deep subwavelength vicinity of the individual nanoparticles. Using femtosecond-transient absorption spectroscopy, we verified that lattice plasmons in plasmonic nanoparticle arrays could reach a 200-fold enhancement of the spontaneous emission rate of the dye because of their large local density of optical states.

7.
Phys Rev Lett ; 111(10): 107401, 2013 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-25166708

RESUMEN

We report femtosecond stimulated Raman spectroscopy measurements of lattice dynamics in semiconductor nanocrystals and characterize longitudinal optical (LO) phonon production during confinement-enhanced, ultrafast intraband relaxation. Stimulated Raman signals from unexcited CdSe nanocrystals produce a spectral shape similar to spontaneous Raman signals. Upon photoexcitation, stimulated Raman amplitude decreases owing to experimentally resolved ultrafast phonon generation rates within the lattice. We find a ∼600 fs, particle-size-independent depletion time attributed to hole cooling, evidence of LO-to-acoustic down-conversion, and LO phonon mode softening.

8.
Nano Lett ; 12(11): 5769-74, 2012 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-23013283

RESUMEN

Plasmonic lasers exploit strong electromagnetic field confinement at dimensions well below the diffraction limit. However, lasing from an electromagnetic hot spot supported by discrete, coupled metal nanoparticles (NPs) has not been explicitly demonstrated to date. We present a new design for a room-temperature nanolaser based on three-dimensional (3D) Au bowtie NPs supported by an organic gain material. The extreme field compression, and thus ultrasmall mode volume, within the bowtie gaps produced laser oscillations at the localized plasmon resonance gap mode of the 3D bowties. Transient absorption measurements confirmed ultrafast resonant energy transfer between photoexcited dye molecules and gap plasmons on the picosecond time scale. These plasmonic nanolasers are anticipated to be readily integrated into Si-based photonic devices, all-optical circuits, and nanoscale biosensors.


Asunto(s)
Técnicas Biosensibles , Rayos Láser , Absorción , Campos Electromagnéticos , Cinética , Ensayo de Materiales , Nanopartículas del Metal/química , Microscopía Electrónica de Rastreo/métodos , Nanoestructuras/química , Nanotecnología/métodos , Silicio/química , Espectrofotometría Infrarroja/métodos , Resonancia por Plasmón de Superficie , Temperatura
9.
Proc Natl Acad Sci U S A ; 109(39): 15651-6, 2012 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-22586073

RESUMEN

Photodriving the activity of water-oxidation catalysts is a critical step toward generating fuel from sunlight. The design of a system with optimal energetics and kinetics requires a mechanistic understanding of the single-electron transfer events in catalyst activation. To this end, we report here the synthesis and photophysical characterization of two covalently bound chromophore-catalyst electron transfer dyads, in which the dyes are derivatives of the strong photooxidant perylene-3,4:9,10-bis(dicarboximide) (PDI) and the molecular catalyst is the Cp*Ir(ppy)Cl metal complex, where ppy = 2-phenylpyridine. Photoexcitation of the PDI in each dyad results in reduction of the chromophore to PDI(•-) in less than 10 ps, a process that outcompetes any generation of (3*)PDI by spin-orbit-induced intersystem crossing. Biexponential charge recombination largely to the PDI-Ir(III) ground state is suggestive of multiple populations of the PDI(•-)-Ir(IV) ion-pair, whose relative abundance varies with solvent polarity. Electrochemical studies of the dyads show strong irreversible oxidation current similar to that seen for model catalysts, indicating that the catalytic integrity of the metal complex is maintained upon attachment to the high molecular weight photosensitizer.


Asunto(s)
Iridio/química , Oxidantes Fotoquímicos/química , Perileno , Procesos Fotoquímicos , Agua/química , Catálisis , Transporte de Electrón , Cinética , Oxidación-Reducción , Perileno/análogos & derivados , Perileno/química , Piridinas/química
10.
ACS Nano ; 6(4): 3318-26, 2012 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-22424173

RESUMEN

We report the direct visualization of interactions between drug-loaded nanoparticles and the cancer cell nucleus. Nanoconstructs composed of nucleolin-specific aptamers and gold nanostars were actively transported to the nucleus and induced major changes to the nuclear phenotype via nuclear envelope invaginations near the site of the construct. The number of local deformations could be increased by ultrafast, light-triggered release of the aptamers from the surface of the gold nanostars. Cancer cells with more nuclear envelope folding showed increased caspase 3 and 7 activity (apoptosis) as well as decreased cell viability. This newly revealed correlation between drug-induced changes in nuclear phenotype and increased therapeutic efficacy could provide new insight for nuclear-targeted cancer therapy.


Asunto(s)
Núcleo Celular/metabolismo , Oro/química , Oro/metabolismo , Nanopartículas del Metal/química , Imagen Molecular , Aptámeros de Nucleótidos/genética , Aptámeros de Nucleótidos/metabolismo , Secuencia de Bases , Núcleo Celular/efectos de la radiación , Células HeLa , Humanos , Luz , Membrana Nuclear/metabolismo , Membrana Nuclear/efectos de la radiación , Fosfoproteínas/metabolismo , Proteínas de Unión al ARN/metabolismo , Propiedades de Superficie , Nucleolina
11.
J Am Chem Soc ; 134(9): 4363-72, 2012 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-22329812

RESUMEN

The synthesis and photoinduced charge transfer properties of a series of Chl-based donor-acceptor triad building blocks that self-assemble into cyclic tetramers are reported. Chlorophyll a was converted into zinc methyl 3-ethylpyrochlorophyllide a (Chl) and then further modified at its 20-position to covalently attach a pyromellitimide (PI) acceptor bearing a pyridine ligand and one or two naphthalene-1,8:4,5-bis(dicarboximide) (NDI) secondary electron acceptors to give Chl-PI-NDI and Chl-PI-NDI(2). The pyridine ligand within each ambident triad enables intermolecular Chl metal-ligand coordination in dry toluene, which results in the formation of cyclic tetramers in solution, as determined using small- and wide-angle X-ray scattering at a synchrotron source. Femtosecond and nanosecond transient absorption spectroscopy of the monomers in toluene-1% pyridine and the cyclic tetramers in toluene shows that the selective photoexcitation of Chl results in intramolecular electron transfer from (1*)Chl to PI to form Chl(+•)-PI(-•)-NDI and Chl(+•)-PI(-•)-NDI(2). This initial charge separation is followed by a rapid charge shift from PI(-•) to NDI and subsequent charge recombination of Chl(+•)-PI-NDI(-•) and Chl(+•)-PI-(NDI)NDI(-•) on a 5-30 ns time scale. Charge recombination in the Chl-PI-NDI(2) cyclic tetramer (τ(CR) = 30 ± 1 ns in toluene) is slower by a factor of 3 relative to the monomeric building blocks (τ(CR) = 10 ± 1 ns in toluene-1% pyridine). This indicates that the self-assembly of these building blocks into the cyclic tetramers alters their structures in a way that lengthens their charge separation lifetimes, which is an advantageous strategy for artificial photosynthetic systems.


Asunto(s)
Clorofila/química , Naftalenos/química , Compuestos Organometálicos/química , Ciclización , Electroquímica , Transporte de Electrón , Modelos Moleculares , Estructura Molecular , Compuestos Organometálicos/síntesis química
12.
J Am Chem Soc ; 134(10): 4581-8, 2012 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-22335614

RESUMEN

Donor-bridge-acceptor (D-B-A) systems in which a 3,5-dimethyl-4-(9-anthracenyl)julolidine (DMJ-An) chromophore and a naphthalene-1,8:4,5-bis(dicarboximide) (NI) acceptor are linked by oligomeric 2,7-fluorenone (FN(n)) bridges (n = 1-3) have been synthesized. Selective photoexcitation of DMJ-An quantitatively produces DMJ(+•)-An(-•), and An(-•) acts as a high-potential electron donor. Femtosecond transient absorption spectroscopy in the visible and mid-IR regions showed that electron transfer occurs quantitatively in the sequence: DMJ(+•)-An(-•)-FN(n)-NI → DMJ(+•)-An-FN(n)(-•)-NI → DMJ(+•)-An-FN(n)-NI(-•). The charge-shift reaction from An(-•) to NI(-•) exhibits an exponential distance dependence in the nonpolar solvent toluene with an attenuation factor (ß) of 0.34 Å(-1), which would normally be attributed to electron tunneling by the superexchange mechanism. However, the FN(n)(-•) radical anion was directly observed spectroscopically as an intermediate in the charge-separation mechanism, thereby demonstrating conclusively that the overall charge separation involves the incoherent hopping (stepwise) mechanism. Kinetic modeling of the data showed that the observed exponential distance dependence is largely due to electron injection onto the first FN unit followed by charge hopping between the FN units of the bridge biased by the distance-dependent electrostatic attraction of the two charges in D(+•)-B(-•)-A. This work shows that wirelike behavior does not necessarily result from building a stepwise, energetically downhill redox gradient into a D-B-A molecule.

13.
J Phys Chem A ; 116(8): 1923-30, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22296165

RESUMEN

Intersystem crossing involving photogenerated strongly spin exchange-coupled radical ion pairs in a series of donor-bridge-acceptor molecules was examined. These molecules have a 3,5-dimethyl-4-(9-anthracenyl)-julolidine (DMJ-An) donor either connected directly or connected by a phenyl bridge (Ph), to pyromellitimide (PI), 1 and 2, respectively, or naphthalene-1,8:4,5-bis(dicarboximide) (NI) acceptors, 3 and 4, respectively. Femtosecond transient optical absorption spectroscopy shows that photodriven charge separation produces DMJ(+•)-PI(-•) or DMJ(+•)-NI(-•) quantitatively in 1-4 (τ(CS) ≤ 10 ps), and that charge recombination occurs with τ(CR) = 268 and 158 ps for 1 and 3, respectively, and with τ(CR) = 2.6 and 10 ns for 2 and 4, respectively. Magnetic field effects (MFEs) on the neutral triplet state yield produced by charge recombination were used to measure the exchange coupling (2J) between DMJ(+•) and PI(-•) or NI(-•), giving 2J > 600 mT for 1-3 and 2J = 170 mT for 4. Time-resolved electron paramagnetic resonance (TREPR) spectroscopy revealed that the formation of (3)*An upon charge recombination occurs by spin-orbit charge transfer intersystem crossing (SOCT-ISC) and/or radical-pair intersystem crossing (RP-ISC) mechanisms with the magnitude of 2J determining which triplet formation mechanism dominates. SOCT-ISC is the exclusive triplet formation mechanism in 1-3, whereas both RP-ISC and SOCT-ISC are active for 4. The triplet sublevels populated by SOCT-ISC in 1-4 depend on the donor-acceptor geometry in the charge separated state. This is consistent with the fact that the SOCT-ISC mechanism requires the relevant donor and acceptor orbitals to be nearly perpendicular, so that electron transfer results in a large orbital angular momentum change that must be compensated by a fast spin flip to conserve overall system angular momentum.

14.
J Phys Chem Lett ; 3(24): 3798-805, 2012 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-26291113

RESUMEN

We report the synthesis, self-assembly characteristics, and ultrafast electron transfer dynamics of a perylene-3,4-dicarboximide (PMI) covalently linked to an N,N'-bis(3,4,5-tridodecyloxyphenyl)melamine electron donor (D) via a biphenyl spacer (PMI-Ph2-D). Synchrotron-based small- and wide-angle X-ray scattering (SAXS/WAXS) measurements in methylcyclohexane solution show that PMI-Ph2-D self-assembles into π-π stacked, hydrogen-bonded foldamers consisting of two or three hexameric rings or helices. Ultrafast transient absorption spectroscopy reveals that photoinduced charge separation within these nanostructures occurs by a unique pathway that is emergent in the assembly, whereas electron transfer does not occur in the PMI-Ph2-D monomers in tetrahydrofuran.

15.
J Phys Chem Lett ; 3(17): 2362-6, 2012 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-26292115

RESUMEN

The ultrafast vibrational dynamics of the photoinduced charge-transfer reaction between perylene (Per) and perylene-3,4:9,10-bis(dicarboximide) (PDI) were investigated using femtosecond stimulated Raman spectroscopy (FSRS). Specifically probing the structural dynamics of PDI following its selective photoexcitation in a covalently linked dyad reveals vibrational modes uniquely characteristic to the PDI lowest excited singlet state and radical anion between 1000 and 1700 cm(-1). A comparison of these vibrations to those of the ground state reveals the appearance of new (1*)PDI and PDI(-•) stretching modes in the dyad at 1593 and 1588 cm(-1), respectively. DFT calculations reveal that these vibrations are parallel to the long axis of PDI and thus then may be integral to the charge separation reaction. The ability to differentiate excited state from radical anion vibrational modes allows the evaluation of the influence of specific modes on the charge transfer dynamics in donor-bridge-acceptor systems based on PDI molecular constructs.

16.
J Am Chem Soc ; 132(26): 8813-5, 2010 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-20536125

RESUMEN

Diiron complexes modeled on the active site of the [FeFe] hydrogenases having the general formula [Fe(2)(mu-R)(CO)(6-n)(L)(n)], where commonly R = alkyl or aryl dithiolate and L = CO, CN(-), or PR(3), are a promising class of catalysts for use in photodriven H(2) production. However, many of these catalysts are difficult to photoreduce using chromophores that absorb visible light. Here we report the synthesis and spectroscopic characterization of a naphthalene-4,5-dicarboximide-1,8-dithiolate diiron complex [NMI-Fe(2)S(2)(CO)(6), 1] and a covalently linked, fixed-distance zinc 5,10,15-tri-n-pentyl-20-phenylporphyrin-NMI-Fe(2)S(2)(CO)(6) donor-acceptor dyad (2). The electron-withdrawing nature of the NMI group makes the diiron complex among the most easily reduced hydrogenase mimics reported to date (-0.74 V vs SCE). In the presence of triflic acid, the cyclic voltammogram of 1 showed an increase in current at the first reduction wave at -0.78 V and a new reduction wave at -1.4 V. As the acid concentration was increased, the current at -0.78 V remained constant while the current at -1.4 V increased significantly, which is consistent with a catalytic proton reduction process. Selective photoexcitation of the Zn porphyrin in 2 with 553 nm, 110 fs laser pulses in both toluene and CH(2)Cl(2) yielded transient absorption spectra showing a distinct peak at 616 nm, which has been assigned to [NMI-Fe(2)S(2)(CO)(6)](-*) on the basis of spectroelectrochemical measurements on 1. The 616 nm peak was used to monitor the charge separation (CS) and charge recombination (CR) dynamics of 2, which yielded tau(CS) = 12 +/- 1 ps and tau(CR) = 3.0 +/- 0.2 ns in toluene and tau(CS) = 24 +/- 1 ps and tau(CR) = 57 +/- 1 ps in CH(2)Cl(2). Photoexcitation of the disulfide precursor to 2 in both toluene and CH(2)Cl(2) produced only the singlet and triplet excited states of the Zn porphyrin, showing that electron transfer is favorable only when the diiron complex is present. Photoexcitation of 2 in the presence of trifluoroacetic acid was shown to generate H(2).


Asunto(s)
Materiales Biomiméticos/química , Hidrogenasas/química , Proteínas Hierro-Azufre/química , Metaloporfirinas/química , Procesos Fotoquímicos , Materiales Biomiméticos/metabolismo , Electroquímica , Transporte de Electrón , Hidrogenasas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Cinética , Modelos Moleculares , Conformación Molecular , Análisis Espectral
17.
Appl Opt ; 49(10): 1880-5, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20357874

RESUMEN

Narrow-bandwidth (approximately 27 cm(-1)) tunable picosecond pulses from 480 nm-780 nm were generated from the output of a 1 kHz femtosecond titanium:sapphire laser system using a type I noncollinear optical parametric amplifier (NOPA) with chirped second-harmonic generation (SHG) pumping. Unlike a femtosecond NOPA, this system utilizes a broadband pump beam, the chirped 400 nm SHG of the Ti:sapphire fundamental, to amplify a monochromatic signal beam (spectrally-filtered output of a type II collinear OPA). Optimum geometric conditions for simultaneous phase- and group-velocity matching were calculated in the visible spectrum. This design is an efficient and simple method for generating tunable visible picosecond pulses that are synchronized to the femtosecond pulses.

18.
J Phys Chem B ; 114(5): 1794-802, 2010 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-20073517

RESUMEN

Ruthenium-catalyzed C-H bond activation was used to directly attach phenethyl groups derived from styrene to positions ortho to the imide groups in a variety of rylene imides and diimides including naphthalene-1,8-dicarboximide (NMI), naphthalene-1,4:5,8-bis(dicarboximide) (NI), perylene-3,4-dicarboximide (PMI), perylene-3,4:9,10-bis(dicarboximide) (PDI), and terrylene-3,4:11,12-bis(dicarboximide) (TDI). The monoimides were dialkylated, while the diimides were tetraalkylated, with the exception of NI, which could only be dialkylated due to steric hindrance. The absorption, fluorescence, transient absorption spectra, and lowest excited singlet state lifetimes of these chromophores, with the exception of NI, are nearly identical to those of their unsubstituted parent chromophores. The reduction potentials of the dialkylated chromophores are approximately 100 mV more negative and oxidation potentials are approximately 40 mV less positive than those of the parent compounds, while the corresponding potentials of the tetraalkylated compounds are approximately 200 mV more negative and approximately 100 mV less positive than those of their parent compounds, respectively. Continuous wave electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) data on the radical anion of PDI reveals spin density on the perylene-core protons as well as on the beta-protons of the phenethyl groups. The phenethyl groups enhance the otherwise poor solubility of the bis(dicarboximide) chromophores and only weakly perturb the photophysical and redox properties of the parent molecules, rendering these derivatives and related molecules of significant interest to solar energy conversion.

19.
J Phys Chem A ; 109(47): 10675-82, 2005 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-16863116

RESUMEN

The rotationally resolved ultraviolet absorption cross sections for the 2(0)(0)4(1)(0) vibrational band of the A(1)A(2)-X(1)A(1) electronic transition of formaldehyde (HCHO) at an apodized resolution of 0.027 cm(-1) (approximately 0.0003 nm at 352 nm) over the spectral range 28100-28500 cm(-1) (351-356 nm) at 298 and 220 K, using Fourier transform spectroscopy, are first reported here. Accurate rotationally resolved cross sections are important for the development of in situ HCHO laser-induced fluorescence (LIF) instruments and for atmospheric monitoring. Pressure dependence of the cross sections between 75 and 400 Torr at 298 K was explored, and an average pressure broadening coefficient in dry air of 1.8 x 10(-4) cm(-1) Torr(-1) for several isolated lines is reported. Gaseous HCHO was quantitatively introduced into a flow cell by evaporating micron-sized droplets of HCHO solution, using a novel microinjector technique. The condensed-phase concentrations of HCHO were determined by iodometric titrations to an accuracy of <1%. Accuracy of the measured absorption cross sections is estimated to be better than +/-5%. Integrated and differential cross sections over the entire band at low resolution (approximately 1 cm(-1)) obtained with our calibration technique are in excellent agreement with previous measurements. A maximum differential cross section of 5.7 x 10(-19) cm(2) molecule(-1) was observed at high resolution-almost an order of magnitude greater than any previously reported data at low resolution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...