Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 13(12): 1042, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36522328

RESUMEN

Nuclear actin participates in a continuously expanding list of core processes within eukaryotic nuclei, including the maintenance of genomic integrity. In response to DNA damage, nuclear actin polymerises into filaments that are involved in the repair of damaged DNA through incompletely defined mechanisms. We present data to show that the formation of nuclear F-actin in response to genotoxic stress acts as a scaffold for PML NBs and that these filamentous networks are essential for PML NB fission and recruitment of microbodies to DNA lesions. Further to this, we demonstrate that the accumulation of the toxic lamin A precursor prelamin A induces mislocalisation of nuclear actin to the nuclear envelope and prevents the establishment of nucleoplasmic F-actin networks in response to stress. Consequently, PML NB dynamics and recruitment to DNA lesions is ablated, resulting in impaired DNA damage repair. Inhibition of nuclear export of formin mDia2 restores nuclear F-actin formation by augmenting polymerisation of nuclear actin in response to stress and rescues PML NB localisation to sites of DNA repair, leading to reduced levels of DNA damage.


Asunto(s)
Actinas , Proteínas Nucleares , Actinas/genética , Proteínas Nucleares/genética , Cuerpos Nucleares de la Leucemia Promielocítica , Núcleo Celular , Daño del ADN , ADN , Proteína de la Leucemia Promielocítica/genética
3.
Arterioscler Thromb Vasc Biol ; 40(7): e193-e202, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32404005

RESUMEN

Vascular calcification is a ubiquitous pathology of aging. Oxidative stress, persistent DNA damage, and senescence are major pathways driving both cellular and tissue aging, and emerging evidence suggests that these pathways are activated, and even accelerated, in patients with vascular calcification. The DNA damage response-a complex signaling platform that maintains genomic integrity-is induced by oxidative stress and is intimately involved in regulating cell death and osteogenic differentiation in both bone and the vasculature. Unexpectedly, a posttranslational modification, PAR (poly[ADP-ribose]), which is a byproduct of the DNA damage response, initiates biomineralization by acting to concentrate calcium into spheroidal structures that can nucleate apatitic mineral on the ECM (extracellular matrix). As we start to dissect the molecular mechanisms driving aging-associated vascular calcification, novel treatment strategies to promote healthy aging and delay pathological change are being unmasked. Drugs targeting the DNA damage response and senolytics may provide new avenues to tackle this detrimental and intractable pathology.


Asunto(s)
Envejecimiento/patología , Arterias/patología , Aterosclerosis/patología , Daño del ADN , Estrés Oxidativo , Placa Aterosclerótica , Calcificación Vascular/patología , Factores de Edad , Envejecimiento/genética , Envejecimiento/metabolismo , Animales , Apatitas/metabolismo , Arterias/efectos de los fármacos , Arterias/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Aterosclerosis/metabolismo , Senescencia Celular , Daño del ADN/efectos de los fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Humanos , Mediadores de Inflamación/metabolismo , Osteogénesis , Estrés Oxidativo/efectos de los fármacos , Poli Adenosina Difosfato Ribosa/metabolismo , Calcificación Vascular/tratamiento farmacológico , Calcificación Vascular/genética , Calcificación Vascular/metabolismo
4.
Cell Rep ; 27(11): 3124-3138.e13, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31189100

RESUMEN

Biomineralization of the extracellular matrix is an essential, regulated process. Inappropriate mineralization of bone and the vasculature has devastating effects on patient health, yet an integrated understanding of the chemical and cell biological processes that lead to mineral nucleation remains elusive. Here, we report that biomineralization of bone and the vasculature is associated with extracellular poly(ADP-ribose) synthesized by poly(ADP-ribose) polymerases in response to oxidative and/or DNA damage. We use ultrastructural methods to show poly(ADP-ribose) can form both calcified spherical particles, reminiscent of those found in vascular calcification, and biomimetically calcified collagen fibrils similar to bone. Importantly, inhibition of poly(ADP-ribose) biosynthesis in vitro and in vivo inhibits biomineralization, suggesting a therapeutic route for the treatment of vascular calcifications. We conclude that poly(ADP-ribose) plays a central chemical role in both pathological and physiological extracellular matrix calcification.


Asunto(s)
Biomineralización , Daño del ADN , Poli Adenosina Difosfato Ribosa/metabolismo , Calcificación Vascular/metabolismo , Adolescente , Adulto , Anciano , Animales , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patología , Bovinos , Línea Celular , Células Cultivadas , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Osteoblastos/metabolismo , Osteoblastos/patología , Estrés Oxidativo , Ratas , Ratas Wistar , Ovinos
5.
Sci Rep ; 6: 34581, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27698473

RESUMEN

The reactive-oxygen-species-(ROS)-generating-enzyme Nox2 is essential for leukocyte anti-microbial activity. However its role in cellular redox homeostasis and, consequently, in modulating intracellular signaling pathways remains unclear. Herein, we show Nox2 activation favors thioredoxin-1 (TRX-1)/p40phox interaction, which leads to exclusion of TRX-1 from the nucleus. In contrast, the genetic deficiency of Nox2 or its pharmacological inhibition with apocynin (APO) results in reductive stress after lipopolysaccharide-(LPS)-cell stimulation, which causes nuclear accumulation of TRX-1 and enhanced transcription of inflammatory mediators through nuclear-factor-(NF)-κB. The NF-κB overactivation is prevented by TRX-1 oxidation using inhibitors of thioredoxin reductase-1 (TrxR-1). The Nox2/TRX-1/NF-κB intracellular signaling pathway is involved in the pathophysiology of chronic granulomatous disease (CGD) and sepsis. In fact, TrxR-1 inhibition prevents nuclear accumulation of TRX-1 and LPS-stimulated hyperproduction of tumor-necrosis-factor-(TNF)-α by monocytes and neutrophils purified from blood of CGD patients, who have deficient Nox2 activity. TrxR-1 inhibitors, either lanthanum chloride (LaCl3) or auranofin (AUR), also increase survival rates of mice undergoing cecal-ligation-and-puncture-(CLP). Therefore, our results identify a hitherto unrecognized Nox2-mediated intracellular signaling pathway that contributes to hyperinflammation in CGD and in septic patients. Additionally, we suggest that TrxR-1 inhibitors could be potential drugs to treat patients with sepsis, particularly in those with CGD.


Asunto(s)
Acetofenonas/farmacología , NADPH Oxidasa 2/metabolismo , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Tiorredoxinas/metabolismo , Animales , Enfermedad Granulomatosa Crónica/inducido químicamente , Enfermedad Granulomatosa Crónica/genética , Enfermedad Granulomatosa Crónica/metabolismo , Enfermedad Granulomatosa Crónica/patología , Lipopolisacáridos/toxicidad , Masculino , Ratones , Ratones Noqueados , NADPH Oxidasa 2/genética , FN-kappa B/genética , Oxidación-Reducción/efectos de los fármacos , Sepsis/inducido químicamente , Sepsis/genética , Sepsis/metabolismo , Sepsis/patología , Tiorredoxinas/genética
6.
Nucleus ; 7(5): 498-511, 2016 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-27676213

RESUMEN

The accumulation of prelamin A is linked to disruption of cellular homeostasis, tissue degeneration and aging. Its expression is implicated in compromised genome stability and increased levels of DNA damage, but to date there is no complete explanation for how prelamin A exerts its toxic effects. As the nuclear lamina is important for DNA replication we wanted to investigate the relationship between prelamin A expression and DNA replication fork stability. In this study we report that the expression of prelamin A in U2OS cells induced both mono-ubiquitination of proliferating cell nuclear antigen (PCNA) and subsequent induction of Pol η, two hallmarks of DNA replication fork stalling. Immunofluorescence microscopy revealed that cells expressing prelamin A presented with high levels of colocalisation between PCNA and γH2AX, indicating collapse of stalled DNA replication forks into DNA double-strand breaks. Subsequent protein-protein interaction assays showed prelamin A interacted with PCNA and that its presence mitigated interactions between PCNA and the mature nuclear lamina. Thus, we propose that the cytotoxicity of prelamin A arises in part, from it actively competing against mature lamin A to bind PCNA and that this destabilises DNA replication to induce fork stalling which in turn contributes to genomic instability.


Asunto(s)
Replicación del ADN , Lamina Tipo A/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Línea Celular Tumoral , Daño del ADN , Dimerización , Histonas/metabolismo , Humanos , Unión Proteica , Transporte de Proteínas , Timina/metabolismo , Ubiquitinación
7.
Aging Cell ; 15(6): 1039-1050, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27464478

RESUMEN

The nuclear lamina is essential for the proper structure and organization of the nucleus. Deregulation of A-type lamins can compromise genomic stability, alter chromatin organization and cause premature vascular aging. Here, we show that accumulation of the lamin A precursor, prelamin A, inhibits 53BP1 recruitment to sites of DNA damage and increases basal levels of DNA damage in aged vascular smooth muscle cells. We identify that this genome instability arises through defective nuclear import of 53BP1 as a consequence of abnormal topological arrangement of nucleoporin NUP153. We show for the first time that this nucleoporin is important for the nuclear localization of Ran and that the deregulated Ran gradient is likely to be compromising the nuclear import of 53BP1. Importantly, many of the defects associated with prelamin A expression were significantly reduced upon treatment with Remodelin, a small molecule recently reported to reverse deficiencies associated with abnormal nuclear lamina.

8.
EMBO J ; 35(3): 319-34, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26742780

RESUMEN

Phosphorylation of translation initiation factor 2α (eIF2α) attenuates global protein synthesis but enhances translation of activating transcription factor 4 (ATF4) and is a crucial evolutionarily conserved adaptive pathway during cellular stresses. The serine-threonine protein phosphatase 1 (PP1) deactivates this pathway whereas prolonging eIF2α phosphorylation enhances cell survival. Here, we show that the reactive oxygen species-generating NADPH oxidase-4 (Nox4) is induced downstream of ATF4, binds to a PP1-targeting subunit GADD34 at the endoplasmic reticulum, and inhibits PP1 activity to increase eIF2α phosphorylation and ATF4 levels. Other PP1 targets distant from the endoplasmic reticulum are unaffected, indicating a spatially confined inhibition of the phosphatase. PP1 inhibition involves metal center oxidation rather than the thiol oxidation that underlies redox inhibition of protein tyrosine phosphatases. We show that this Nox4-regulated pathway robustly enhances cell survival and has a physiologic role in heart ischemia-reperfusion and acute kidney injury. This work uncovers a novel redox signaling pathway, involving Nox4-GADD34 interaction and a targeted oxidative inactivation of the PP1 metal center, that sustains eIF2α phosphorylation to protect tissues under stress.


Asunto(s)
Factor 2 Eucariótico de Iniciación/metabolismo , NADPH Oxidasas/metabolismo , Proteína Fosfatasa 1/metabolismo , Receptores de Neuropéptido Y/antagonistas & inhibidores , Transducción de Señal , Animales , Línea Celular , Humanos , NADPH Oxidasa 4 , Oxidación-Reducción
9.
Anal Biochem ; 442(1): 51-61, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23928048

RESUMEN

Many proteins involved in DNA repair systems interact with DNA that has structure altered from the typical B-form helix. Using magnetic beads to immobilize DNAs containing various types of structures, we evaluated the in vitro binding activities of two well-characterized DNA repair proteins, Escherichia coli MutS and human p53. E. coli MutS bound to double-stranded DNAs, with higher affinity for a G/T mismatch compared to a G/A mismatch and highest affinity for larger non-B-DNA structures. E. coli MutS bound best to DNA between pH 6 and 9. Experiments discriminated between modes of p53-DNA binding, and increasing ionic strength reduced p53 binding to nonspecific double-stranded DNA, but had minor effects on binding to consensus response sequences or single-stranded DNA. Compared to nonspecific DNA sequences, p53 bound with a higher affinity to mismatches and base insertions, while binding to various hairpin structures was similar to that observed to its consensus DNA sequence. For hairpins containing CTG repeats, the extent of p53 binding was proportional to the size of the repeat. In summary, using the flexibility of the magnetic bead separation assay we demonstrate that pH and ionic strength influence the binding of two DNA repair proteins to a variety of DNA structures.


Asunto(s)
ADN/química , Proteínas de Escherichia coli/química , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/química , Proteína p53 Supresora de Tumor/química , Secuencia de Aminoácidos , Escherichia coli , Humanos , Conformación de Ácido Nucleico , Concentración Osmolar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA