Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Bone Rep ; 19: 101728, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38076483

RESUMEN

COL2A1 gene encodes the alpha-1 chain of type-II procollagen. Heterozygous pathogenic variants are associated with the broad clinical spectrum of genetic diseases known as type-II collagenopathies. We aimed to characterize the NM_001844.5:c.1330G>A;p.Gly444Ser variant detected in the COL2A1 gene through trio-based prenatal exome sequencing in a fetus presenting a severe skeletal phenotype at 31 Gestational Weeks and in his previously undisclosed mild-affected father. Functional studies on father's cutaneous fibroblasts, along with in silico protein modeling and in vitro chondrocytes differentiation, showed intracellular accumulation of collagen-II, its localization in external Golgi vesicles and nuclear morphological alterations. Extracellular matrix showed a disorganized fibronectin network. These results showed that p.Gly444Ser variant alters procollagen molecules processing and the assembly of mature type-II collagen fibrils, according to COL2A1-chain disorganization, displayed by protein modeling. Clinical assessment at 38 y.o., through a reverse-phenotyping approach, revealed limp gait, short and stocky appearance. X-Ray and MRI showed pelvis asymmetry with severe morpho-structural alterations of the femoral heads bilaterally, consistent with a mild form of type-II collagenopathy. This study shows how the fusion of genomics and clinical expertise can drive a diagnosis supported by cellular and bioinformatics studies to effectively establish variants pathogenicity.

2.
Genes (Basel) ; 14(12)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38136979

RESUMEN

Chromosomal submicroscopic imbalances represent well-known causes of neurodevelopmental disorders. In some cases, these can cause specific autosomal dominant syndromes, with high-to-complete penetrance and de novo occurrence of the variant. In other cases, they result in non-syndromic neurodevelopmental disorders, often acting as moderate-penetrance risk factors, possibly inherited from unaffected parents. We describe a three-generation family with non-syndromic neuropsychiatric features segregating with a novel 19q13.32q13.33 microduplication. The propositus was a 28-month-old male ascertained for psychomotor delay, with no dysmorphic features or malformations. His mother had Attention-Deficit/Hyperactivity Disorder and a learning disability. The maternal uncle had an intellectual disability. Chromosomal microarray analysis identified a 969 kb 19q13.32q13.33 microduplication in the proband. The variant segregated in the mother, the uncle, and the maternal grandmother of the proband, who also presented neuropsychiatric disorders. Fragile-X Syndrome testing was negative. Exome Sequencing did not identify Pathogenic/Likely Pathogenic variants. Imbalances involving 19q13.32 and 19q13.33 are associated with neurodevelopmental delay. A review of the reported microduplications allowed to propose BICRA (MIM *605690) and KPTN (MIM *615620) as candidates for the neurodevelopmental delay susceptibility in 19q13.32q13.33 copy number gains. The peculiarities of this case are the small extension of the duplication, the three-generation segregation, and the full penetrance of the phenotype.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Masculino , Humanos , Preescolar , Fenotipo , Factores de Transcripción/genética , Trastornos del Neurodesarrollo/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Familia , Proteínas de Microfilamentos/genética
3.
Viruses ; 15(7)2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37515105

RESUMEN

Despite the availability on the market of different anti-SARS-CoV-2 vaccines, there are still unanswered questions on whether they can stimulate long-lasting protection. A deep understanding of adaptive immune response to SARS-CoV-2 is important for optimizing both vaccine development and pandemic control measures. Among cytokines secreted by lymphocytes in response to viral infection, IFN-γ plays a pivotal role both in innate and adaptive immunity. In this study, we report on 28 naïve-to-SARS-Cov-2-infection and unvaccinated subjects, having reported a close and prolonged contact with COVID-19-positive patients. Samples were tested for defective genetic variants in interferon pathway genes by whole exome sequencing and anti-IFN autoantibodies production was investigated. Subject T-cells were cultured and infected with pseudotype particles bearing the S proteins and in parallel stimulated with two S-peptides designed on the RBD region of the spike protein. Our results showed that one of these peptides, RBD 484-508, induces a significant increase in IFN-γ gene expression and protein production in T-cells, comparable to those obtained in cells infected by SARS-CoV-2 pseudovirus. This work deepens our understanding of immune response and highlights the selected peptide as a reasonable approach to induce broad, potent, and variant concern-independent T-cell responses.


Asunto(s)
COVID-19 , Humanos , Linfocitos T , SARS-CoV-2 , Interferón gamma , Péptidos , Anticuerpos Antivirales , Glicoproteína de la Espiga del Coronavirus/genética
4.
J Matern Fetal Neonatal Med ; 36(1): 2205985, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37100787

RESUMEN

Short-rib thoracic dysplasia 3 with or without polydactyly (OMIM # 613091) represents a clinical spectrum encompassing a heterogeneous group of skeletal dysplasias associated with homozygous or compound heterozygous mutations of DYNC2H1. We describe the case of a couple with two consecutive therapeutic abortions due to a diagnosis of short-rib thoracic dysplasia mutations. In the first pregnancy, the diagnosis has been made at 21 weeks. In the second one, an accurate and early ultrasound examination allowed a diagnosis at 12 weeks. DYNC2H1 mutations were confirmed in both cases. In this report, we underline the importance of an ultrasound evaluation at the end of the first trimester of pregnancy in the detection of early signs of skeletal dysplasias. An early prenatal diagnosis of a short-rib skeletal dysplasia, such as for other severe skeletal dysplasias, is critical to offer a couple the chance of a weighted, informed, and less traumatic decision about the continuation of the pregnancy.


Asunto(s)
Osteocondrodisplasias , Síndrome de Costilla Pequeña y Polidactilia , Embarazo , Femenino , Humanos , Síndrome de Costilla Pequeña y Polidactilia/diagnóstico , Síndrome de Costilla Pequeña y Polidactilia/genética , Diagnóstico Prenatal , Ultrasonografía , Osteocondrodisplasias/diagnóstico por imagen , Osteocondrodisplasias/genética , Costillas , Ultrasonografía Prenatal , Dineínas Citoplasmáticas/genética
5.
Eur J Hum Genet ; 31(4): 479-484, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36599940

RESUMEN

Deleterious variants of DYNC2H1 gene are associated with a wide spectrum of skeletal ciliopathies (SC). We used targeted parallel sequencing to analyze 25 molecularly unsolved families with different SCs. Deleterious DYNC2H1 variants were found in six sporadic patients and two monozygotic (MZ) twins. Clinical diagnoses included short rib-polydactyly type 3 in two cases, and asphyxiating thoracic dystrophy (ATD) in one case. Remarkably, clinical diagnosis fitted with EvC, mixed ATD/EvC and short rib-polydactyly/EvC phenotypes in three sporadic patients and the MZ twins. EvC/EvC-like features always occurred in compound heterozygotes sharing a previously unreported splice site change (c.6140-5A>G) or compound heterozygotes for two missense variants. These results expand the DYNC2H1 mutational repertoire and its clinical spectrum, suggesting that EvC may be occasionally caused by DYNC2H1 variants presumably acting as hypomorphic alleles.


Asunto(s)
Ciliopatías , Dineínas Citoplasmáticas , Síndrome de Ellis-Van Creveld , Polidactilia , Humanos , Ciliopatías/diagnóstico , Ciliopatías/genética , Dineínas Citoplasmáticas/genética , Síndrome de Ellis-Van Creveld/diagnóstico , Síndrome de Ellis-Van Creveld/genética , Mutación , Polidactilia/genética
6.
Clin Genet ; 103(2): 156-166, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36224108

RESUMEN

CNOT2 haploinsufficiency underlies a rare neurodevelopmental disorder named Intellectual Developmental disorder with NAsal speech, Dysmorphic Facies, and variable Skeletal anomalies (IDNADFS, OMIM 618608). The condition clinically overlaps with chromosome 12q15 deletion syndrome, suggesting a major contribution of CNOT2 haploinsufficiency to the latter. CNOT2 is a member of the CCR4-NOT complex, which is a master regulator of multiple cellular processes, including gene expression, RNA deadenylation, and protein ubiquitination. To date, less than 20 pathogenic 12q15 microdeletions encompassing CNOT2, together with a single truncating variant of the gene, and two large intragenic deletions have been reported. Due to the small number of affected subjects described so far, the clinical profile of IDNADFS has not been fully delineated. Here we report five unrelated individuals, three of which carrying de novo intragenic CNOT2 variants, one presenting with a multiexon intragenic deletion, and an additional case of 12q15 microdeletion syndrome. Finally, we assess the features of IDNADFS by reviewing published and present affected individuals and reevaluate the clinical phenotype of this neurodevelopmental disorder.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Deleción Cromosómica , Haploinsuficiencia/genética , Trastornos del Neurodesarrollo/genética , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Fenotipo , Proteínas Represoras/genética
7.
Front Genet ; 14: 1307934, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38239854

RESUMEN

Desmosterolosis is a rare sterol biosynthesis disorder characterized by multiple congenital anomalies, failure to thrive, severe developmental delay, progressive epileptic encephalopathy, and elevated levels of desmosterol caused by biallelic mutations of DHCR24 encoding 3-ß-hydroxysterol Δ-24-reductase. DHCR24 is regarded as the key enzyme of cholesterol synthesis in the metabolism of brain cholesterol as it catalyzes the reduction of the Δ-24 double bond of sterol intermediates during cholesterol biosynthesis. To date, 15 DHCR24 variants, detected in 2 related and 14 unrelated patients, have been associated with the desmosterolosis disorder. Here, we describe a proband harboring the never-described DHCR24 homozygous missense variant NM_014762.4:c.506T>C, NP_055577.1:p.M169T, whose functional validation was confirmed through biochemical assay. By using molecular dynamics simulation techniques, we investigated the impact of this variant on the protein stability and interaction network with the flavin adenine dinucleotide cofactor, thereby providing a preliminary assessment of its mechanistic role in comparison to all known pathogenic variants, the wild-type protein, and a known benign DHCR24 variant. This report expands the clinical and molecular spectra of the DHCR24-related disorder, reports on a novel DHCR24 deleterious variant associated with desmosterolosis, and gives new insights into genotype-phenotype correlations.

8.
J Cell Mol Med ; 26(19): 4940-4948, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36073344

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the novel coronavirus responsible for worldwide coronavirus disease (COVID-19). We previously observed that Angiotensin-converting enzyme 2 (ACE2) and Dipeptidyl peptidase-4 (DPP4) are significantly overexpressed in naso-oropharyngeal swabs (NPS) of COVID-19 patients, suggesting their putative functional role in the disease progression. ACE2 and DPP4 overexpression in COVID-19 patients may be associated to epigenetic mechanism, such as miRNA differential expression. We investigated if hsa-let7b-5p, reported to target both ACE2 and DPP4 transcripts, could be involved in the regulation of these genes. We verified that the inhibition and overexpression of hsa-let7b-5p matched to a modulation of both ACE2 and DPP4 levels. Then, we observed a statistically significant downregulation (FC = -1.5; p < 0.05) of hsa-let7b-5p in the same COVID-19 and control samples of our previous study. This is the first study that shows hsa-let7b-5p low expression in naso-oropharyngeal swabs of COVID-19 patients and demonstrates a functional role of this miR in regulating ACE2 and DPP4 levels. These data suggest the involvement of hsa-let7b-5p in the regulation of genes necessary for SARS-CoV-2 infections and its putative role as a therapeutic target for COVID-19.


Asunto(s)
COVID-19 , MicroARNs , Enzima Convertidora de Angiotensina 2/genética , COVID-19/genética , Dipeptidil Peptidasa 4/genética , Dipeptidil Peptidasa 4/metabolismo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , SARS-CoV-2/genética
9.
Clin Genet ; 102(2): 142-148, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35575217

RESUMEN

This study aimed to widen the knowledge of a recently identified, autosomal-recessive, multiple congenital anomalies syndrome to date observed in only other three children. This is the second report of biallelic mutations in MAPKAPK5 whose impairment during human development has been associated with neurological, cardiac, and facial anomalies combined with fingers and toes malformations. Through the affected patients' genetic and phenotypic features overlap, this report confirms MAPKAPK5 as causative gene and adds unique neurodevelopmental characterization. Moreover, based on the complex congenital genitourinary anomalies reported and MAPKAPK5 literature review, we also propose kidney and external genitalia involvement as a key syndromic feature whose expressivity may be more severe in males.


Asunto(s)
Anomalías Múltiples , Péptidos y Proteínas de Señalización Intracelular , Proteínas Serina-Treonina Quinasas , Anomalías Urogenitales , Anomalías Múltiples/genética , Discapacidades del Desarrollo/genética , Estudios de Seguimiento , Estudios de Asociación Genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Fenotipo , Proteínas Serina-Treonina Quinasas/genética , Anomalías Urogenitales/genética
10.
Front Genet ; 13: 798607, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35368691

RESUMEN

The 16p13.11 microdeletion, whose prevalence in the general population is about 0.04%, is known in literature as a predisposition factor to neurodevelopmental disorders, being found in about 0.13% of patients with schizophrenia, in 0.5-0.6% of patient with epilepsy, cognitive impairment, autism spectrum disorder (ASD) and aggressiveness. The goal of this study was to identify a specific gene set pattern unique for the affected patients in comparison with other familial components. Due to the incomplete penetrance of this copy number variant (CNV), we studied by whole exome sequencing (WES), with particular regard of 850 SFARI genes, three families with an affected member carrier of inherited 16p13.11 and 16p13.11p12.3 microdeletion and one family with an affected member with a de novo 16p13.11 microdeletion. By combining a deductive approach together with personalized network models, we identified gene signatures potentially capable of explaining the clinical phenotype. Candidate variants in genes of interest were identified as possibly involved in determining the neurological phenotype of the four patients, such as compound heterozygosity in CECR2, variants in MTOR and RICTOR genes, compound heterozygous single nucleotide variants in the LRRK2 gene. Moreover, genes present in the microdeletion region were partially present as central nodes, with a focus on NDE1. No additional pathogenetic or uncertain CNVs were found in all four patients. No significant variants were detected in genes included in the microdeletion in patients 1, 2 and 3, excluding the finding of unmasked recessive variants. In conclusion, WES is a fundamental tool in the genetic investigation of patients having a predisposing variant, which is not sufficient to define the clinical phenotype. Moreover, the analysis of WES data using Systems medicine tools, such as personalized network models, led to the prioritization of genes on a high throughput scale and to discover variants in genes that were not prioritized at first.

11.
Pediatr Rep ; 14(1): 131-139, 2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35324822

RESUMEN

Diagnosis of pediatric intellectual disability (ID) can be difficult because it is due to a vast number of established and novel causes. Here, we described a full-term female infant affected by Kleefstra syndrome-2 presenting with neurodevelopmental disorder, a history of hypotonia and minor face anomalies. A systematic literature review was also performed. The patient was a 6-year-old Caucasian female. In the family history there was no intellectual disability or genetic conditions. Auxological parameters at birth were adequate for gestational age. Clinical evaluation at 6 months revealed hypotonia and, successively, delay in the acquisition of the stages of psychomotor development. Auditory, visual, somatosensory, and motor-evoked potentials were normal. A brain MRI, performed at 9 months, showed minimal gliotic changes in bilateral occipital periventricular white matter. Neuropsychiatric control, performed at 5 years, established a definitive diagnosis of childhood autism and developmental delay. Molecular analysis of the exome revealed a novel KMT2C missense variant: c.9244C > T (p.Pro3082Ser) at a heterozygous state, giving her a diagnosis of Kleefstra syndrome 2. Parents did not show the variant. Literature review (four retrieved eligible studies, 10 patients) showed that all individuals had mild, moderate, or severe ID; language and motor delay; and autism. Short stature, microcephaly, childhood hypotonia and plagiocephaly were also present. Conclusion. Kleefstra syndrome 2 is a difficult diagnosis of a rare condition with a high clinical phenotypic heterogeneity. This study suggests that it must be taken in account in the work-up of an orphan diagnosis of intellectual disability and/or autism spectrum disorder.

12.
Genes (Basel) ; 12(11)2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34828448

RESUMEN

Host genomic information, specifically genomic variations, may characterize susceptibility to disease and identify people with a higher risk of harm, leading to better targeting of care and vaccination. Italy was the epicentre for the spread of COVID-19 in Europe, the first country to go into a national lockdown and has one of the highest COVID-19 associated mortality rates. Qatar, on the other hand has a very low mortality rate. In this study, we compared whole-genome sequencing data of 14398 adults and Qatari-national to 925 Italian individuals. We also included in the comparison whole-exome sequence data from 189 Italian laboratory-confirmed COVID-19 cases. We focused our study on a curated list of 3619 candidate genes involved in innate immunity and host-pathogen interaction. Two population-gene metric scores, the Delta Singleton-Cohort variant score (DSC) and Sum Singleton-Cohort variant score (SSC), were applied to estimate the presence of selective constraints in the Qatari population and in the Italian cohorts. Results based on DSC and SSC metrics demonstrated a different selective pressure on three genes (MUC5AC, ABCA7, FLNA) between Qatari and Italian populations. This study highlighted the genetic differences between Qatari and Italian populations and identified a subset of genes involved in innate immunity and host-pathogen interaction.


Asunto(s)
COVID-19/genética , Predisposición Genética a la Enfermedad/genética , Interacciones Microbiota-Huesped/genética , Adulto , Alelos , COVID-19/epidemiología , Control de Enfermedades Transmisibles , Susceptibilidad a Enfermedades/metabolismo , Exoma/genética , Femenino , Frecuencia de los Genes/genética , Predisposición Genética a la Enfermedad/epidemiología , Genética de Población , Genómica/métodos , Humanos , Inmunidad Innata/inmunología , Italia/epidemiología , Masculino , Qatar/epidemiología , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Secuenciación del Exoma/métodos , Secuenciación Completa del Genoma/métodos
13.
Am J Med Genet A ; 185(8): 2417-2433, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34042254

RESUMEN

Biallelic loss-of-function variants in the thrombospondin-type laminin G domain and epilepsy-associated repeats (TSPEAR) gene have recently been associated with ectodermal dysplasia and hearing loss. The first reports describing a TSPEAR disease association identified this gene is a cause of nonsyndromic hearing loss, but subsequent reports involving additional affected families have questioned this evidence and suggested a stronger association with ectodermal dysplasia. To clarify genotype-phenotype associations for TSPEAR variants, we characterized 13 individuals with biallelic TSPEAR variants. Individuals underwent either exome sequencing or panel-based genetic testing. Nearly all of these newly reported individuals (11/13) have phenotypes that include tooth agenesis or ectodermal dysplasia, while three newly reported individuals have hearing loss. Of the individuals displaying hearing loss, all have additional variants in other hearing-loss-associated genes, specifically TMPRSS3, GJB2, and GJB6, that present competing candidates for their hearing loss phenotype. When presented alongside previous reports, the overall evidence supports the association of TSPEAR variants with ectodermal dysplasia and tooth agenesis features but creates significant doubt as to whether TSPEAR variants are a monogenic cause of hearing loss. Further functional evidence is needed to evaluate this phenotypic association.


Asunto(s)
Anodoncia/diagnóstico , Anodoncia/genética , Displasia Ectodérmica/diagnóstico , Displasia Ectodérmica/genética , Variación Genética , Fenotipo , Proteínas/genética , Alelos , Sustitución de Aminoácidos , Estudios de Cohortes , Femenino , Estudios de Asociación Genética , Sitios Genéticos , Humanos , Masculino , Mutación , Linaje , Radiografía
14.
Clin Genet ; 100(3): 268-279, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33988253

RESUMEN

Oculo-auriculo-vertebral spectrum (OAVS) is a developmental disorder of craniofacial morphogenesis. Its etiology is unclear, but assumed to be complex and heterogeneous, with contribution of both genetic and environmental factors. We assessed the occurrence of copy number variants (CNVs) in a cohort of 19 unrelated OAVS individuals with congenital heart defect. Chromosomal microarray analysis identified pathogenic CNVs in 2/19 (10.5%) individuals, and CNVs classified as variants of uncertain significance in 7/19 (36.9%) individuals. Remarkably, two subjects had small intragenic CNVs involving DACH1 and DACH2, two paralogs coding for key components of the PAX-SIX-EYA-DACH network, a transcriptional regulatory pathway controlling developmental processes relevant to OAVS and causally associated with syndromes characterized by craniofacial involvement. Moreover, a third patient showed a large duplication encompassing DMBX1/OTX3, encoding a transcriptional repressor of OTX2, another transcription factor functionally connected to the DACH-EYA-PAX network. Among the other relevant CNVs, a deletion encompassing HSD17B6, a gene connected with the retinoic acid signaling pathway, whose dysregulation has been implicated in craniofacial malformations, was also identified. Our findings suggest that CNVs affecting gene dosage likely contribute to the genetic heterogeneity of OAVS, and implicate the PAX-SIX-EYA-DACH network as novel pathway involved in the etiology of this developmental trait.


Asunto(s)
Variaciones en el Número de Copia de ADN , Síndrome de Goldenhar/genética , Cardiopatías Congénitas/genética , Adolescente , Adulto , Niño , Preescolar , Estudios de Cohortes , Femenino , Síndrome de Goldenhar/fisiopatología , Humanos , Lactante , Recién Nacido , Masculino , Análisis por Micromatrices , Polimorfismo de Nucleótido Simple , Adulto Joven
15.
Front Genet ; 12: 577623, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33719329

RESUMEN

Gene set enrichment analysis (GSEA) is a powerful tool to associate a disease phenotype to a group of genes/proteins. GSEA attributes a specific weight to each gene/protein in the input list that depends on a metric of choice, which is usually represented by quantitative expression data. However, expression data are not always available. Here, GSEA based on betweenness centrality of a protein-protein interaction (PPI) network is described and applied to two cases, where an expression metric is missing. First, personalized PPI networks were generated from genes displaying alterations (assessed by array comparative genomic hybridization and whole exome sequencing) in four probands bearing a 16p13.11 microdeletion in common and several other point variants. Patients showed disease phenotypes linked to neurodevelopment. All networks were assembled around a cluster of first interactors of altered genes with high betweenness centrality. All four clusters included genes known to be involved in neurodevelopmental disorders with different centrality. Moreover, the GSEA results pointed out to the evidence of "cell cycle" among enriched pathways. Second, a large interaction network obtained by merging proteomics studies on three neurodegenerative disorders was analyzed from the topological point of view. We observed that most central proteins are often linked to Parkinson's disease. The selection of these proteins improved the specificity of GSEA, with "Metabolism of amino acids and derivatives" and "Cellular response to stress or external stimuli" as top-ranked enriched pathways. In conclusion, betweenness centrality revealed to be a suitable metric for GSEA. Thus, centrality-based GSEA represents an opportunity for precision medicine and network medicine.

16.
Cell Death Dis ; 12(4): 310, 2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33762578

RESUMEN

SARS-CoV-2 is responsible for the ongoing world-wide pandemic which has already taken more than two million lives. Effective treatments are urgently needed. The enzymatic activity of the HECT-E3 ligase family members has been implicated in the cell egression phase of deadly RNA viruses such as Ebola through direct interaction of its VP40 Protein. Here we report that HECT-E3 ligase family members such as NEDD4 and WWP1 interact with and ubiquitylate the SARS-CoV-2 Spike protein. Furthermore, we find that HECT family members are overexpressed in primary samples derived from COVID-19 infected patients and COVID-19 mouse models. Importantly, rare germline activating variants in the NEDD4 and WWP1 genes are associated with severe COVID-19 cases. Critically, I3C, a natural NEDD4 and WWP1 inhibitor from Brassicaceae, displays potent antiviral effects and inhibits viral egression. In conclusion, we identify the HECT family members of E3 ligases as likely novel biomarkers for COVID-19, as well as new potential targets of therapeutic strategy easily testable in clinical trials in view of the established well-tolerated nature of the Brassicaceae natural compounds.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19/enzimología , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/metabolismo , Adulto , Anciano , Animales , Antivirales/farmacología , COVID-19/genética , COVID-19/metabolismo , Chlorocebus aethiops , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Femenino , Humanos , Indoles/farmacología , Masculino , Ratones , Ratones Endogámicos BALB C , Persona de Mediana Edad , Ubiquitina-Proteína Ligasas Nedd4/genética , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Células Vero
17.
Clin Genet ; 99(4): 540-546, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33372278

RESUMEN

Biallelic pathogenic variants in POC1A result in SOFT (Short-stature, Onychodysplasia, Facial-dysmorphism, and hypoTrichosis) and variant POC1A-related (vPOC1A) syndromes. The latter, nowadays described in only two unrelated subjects, is associated with a restricted spectrum of variants falling in exon 10, which is naturally skipped in a specific POC1A mRNA. The synthesis of an amount of a POC1A isoform from this transcript in individuals with vPOC1A syndrome has been believed as the likely explanation for such a genotype-phenotype correlation. Here, we illustrate the clinical and molecular findings in a woman who resulted to be compound heterozygous for a recurrent frameshift variant in exon 10 and a novel variant in exon 9 of POC1A. Phenotypic characteristics of this woman included severe hyperinsulinemic dyslipidemia, acanthosis nigricans, moderate growth restriction, and dysmorphisms. These manifestations overlap the clinical features of the two previously published individuals with vPOC1A syndrome. RT-PCR analysis on peripheral blood and subsequent sequencing of the obtained amplicons demonstrated a variety of POC1A alternative transcripts that resulted to be expressed in the proband, in the healthy mother, and in controls. We illustrate the possible consequences of the two POC1A identified variants in an attempt to explain pleiotropy in vPOC1A syndrome.


Asunto(s)
Proteínas de Ciclo Celular/genética , Hiperinsulinismo Congénito/genética , Proteínas del Citoesqueleto/genética , Dislipidemias/genética , Acantosis Nigricans/genética , Adulto , Edad de Inicio , Proteínas de Ciclo Celular/deficiencia , Simulación por Computador , Hiperinsulinismo Congénito/tratamiento farmacológico , Proteínas del Citoesqueleto/deficiencia , ADN Complementario/genética , Dislipidemias/tratamiento farmacológico , Exones/genética , Ácidos Grasos Insaturados/uso terapéutico , Femenino , Mutación del Sistema de Lectura , Heterocigoto , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Resistencia a la Insulina , Metformina/uso terapéutico , Persona de Mediana Edad , Linaje , Fenotipo , Plasmaféresis , Isoformas de Proteínas/genética , Síndrome , Transcripción Genética
18.
Hum Genomics ; 14(1): 29, 2020 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-32917283

RESUMEN

BACKGROUND: Coronaviruses (CoV) are a large family of viruses that are common in humans and many animal species. Animal coronaviruses rarely infect humans with the exceptions of the Middle East respiratory syndrome ( MERS-CoV ), the severe acute respiratory syndrome corona virus (SARS-CoV), and now SARS-CoV-2, which is the cause of the ongoing pandemic of coronavirus disease 2019 (COVID-19). Several studies suggested that genetic variants in the ACE2 gene may influence the host susceptibility or resistance to SARS-CoV-2 infection according to the functional role of ACE2 in human pathophysiology. However, many of these studies have been conducted in silico based on epidemiological and population data. We therefore investigated the occurrence of ACE2 variants in a cohort of 131 Italian unrelated individuals clinically diagnosed with COVID-19 and in an Italian control population, to evaluate a possible allelic association with COVID-19, by direct DNA analysis. METHODS: As a pilot study, we analyzed, by whole-exome sequencing, genetic variants of ACE2 gene in 131 DNA samples of COVID-19 patients hospitalized at Tor Vergata University Hospital and at Bambino Gesù Children's Hospital, Rome. We used a large control group consisting of 1000 individuals (500 males and 500 females). RESULTS: We identified three different germline variants: one intronic c.439+4G>A and two missense c.1888G>C p.(Asp630His) and c.2158A>G p.(Asn720Asp) in a total of 131 patients with a similar frequency in male and female. Thus far, only the c.1888G>C p.(Asp630His) variant shows a statistically different frequency compared to the ethnically matched populations. Therefore, further studies are needed in larger cohorts, since it was found only in one heterozygous COVID-19 patient. CONCLUSIONS: Our results suggest that there is no strong evidence, in our cohort, of consistent association of ACE2 variants with COVID-19 severity. We might speculate that rare susceptibility/resistant alleles could be located in the non-coding regions of the ACE2 gene, known to play a role in regulation of the gene activity.


Asunto(s)
Betacoronavirus/genética , Infecciones por Coronavirus/genética , Pandemias , Peptidil-Dipeptidasa A/genética , Neumonía Viral/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Enzima Convertidora de Angiotensina 2 , Betacoronavirus/patogenicidad , COVID-19 , Niño , Simulación por Computador , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/virología , Femenino , Predisposición Genética a la Enfermedad/genética , Humanos , Italia/epidemiología , Masculino , Persona de Mediana Edad , Neumonía Viral/epidemiología , Neumonía Viral/virología , SARS-CoV-2 , Secuenciación del Exoma , Adulto Joven
20.
World J Hepatol ; 12(2): 64-71, 2020 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-32184942

RESUMEN

BACKGROUND: Benign recurrent intrahepatic cholestasis is a genetic disorder with recurrent cholestatic jaundice due to ATP8B1 and ABCB11 gene mutations encoding for hepato-canalicular transporters. Herein, we firstly provide the evidence that a nonsense variant of ATP8B1 gene (c.1558A>T) in heterozygous form is involved in BRIC pathogenesis. CASE SUMMARY: A 29-year-old male showed severe jaundice and laboratory tests consistent with intrahepatic cholestasis despite normal gamma-glutamyltranspeptidase. Acute and chronic liver diseases with viral, metabolic and autoimmune etiology were excluded. Normal intra/extra-hepatic bile ducts were demonstrated by magnetic resonance. Liver biopsy showed: Cholestasis in the centrilobular and intermediate zones with bile plugs and intra-hepatocyte pigment, Kupffer's cell activation/hyperplasia and preserved biliary ducts. Being satisfied benign recurrent intrahepatic cholestasis diagnostic criteria, ATP8B1 and ABCB11 gene analysis was performed. Surprisingly, we found a novel nonsense variant of ATP8B1 gene (c.1558A>T) in heterozygosis. The variant was confirmed by Sanger sequencing following a standard protocol and tested for familial segregation, showing a maternal inheritance. Immunohistochemistry confirmed a significant reduction of mutated gene related protein (familial intrahepatic cholestasis 1). The patient was treated with ursodeoxycholic acid 15 mg/kg per day and colestyramine 8 g daily with total bilirubin decrease and normalization at the 6th and 12th mo. CONCLUSION: A genetic abnormality, different from those already known, could be involved in familial intrahepatic cholestatic disorders and/or pro-cholestatic genetic predisposition, thus encouraging further mutation detection in this field.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA