Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ann Hum Genet ; 88(1): 58-75, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37905714

RESUMEN

Autosomal recessive polycystic kidney disease is an early onset inherited hepatorenal disorder affecting around 1 in 20,000 births with no approved specific therapies. The disease is almost always caused by variations in the polycystic kidney and hepatic disease 1 gene, which encodes fibrocystin (FC), a very large, single-pass transmembrane glycoprotein found in primary cilia, urine and urinary exosomes. By comparison to proteins involved in autosomal dominant PKD, our structural and molecular understanding of FC has lagged far behind such that there are no published experimentally determined structures of any part of the protein. Bioinformatics analyses predict that the ectodomain contains a long chain of immunoglobulin-like plexin-transcription factor domains, a protective antigen 14 domain, a tandem G8-TMEM2 homology region and a sperm protein, enterokinase and agrin domain. Here we review current knowledge on the molecular function of the protein from a structural perspective.


Asunto(s)
Riñón Poliquístico Autosómico Recesivo , Receptores de Superficie Celular , Humanos , Riñón Poliquístico Autosómico Recesivo/genética , Riñón Poliquístico Autosómico Recesivo/metabolismo , Receptores de Superficie Celular/química , Receptores de Superficie Celular/genética , ARN , Factores de Transcripción/química , Proteínas del Esperma/química , Conformación Proteica
2.
Structure ; 26(11): 1486-1498.e6, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30197037

RESUMEN

Kinesin-1 transports numerous cellular cargoes along microtubules. The kinesin-1 light chain (KLC) mediates cargo binding and regulates kinesin-1 motility. To investigate the molecular basis for kinesin-1 recruitment and activation by cargoes, we solved the crystal structure of the KLC2 tetratricopeptide repeat (TPR) domain bound to the cargo JIP3. This, combined with biophysical and molecular evolutionary analyses, reveals a kinesin-1 cargo binding site, located on KLC TPR1, which is conserved in homologs from sponges to humans. In the complex, JIP3 crosslinks two KLC2 TPR domains via their TPR1s. We show that TPR1 forms a dimer interface that mimics JIP3 binding in all crystal structures of the unbound KLC TPR domain. We propose that cargo-induced dimerization of the KLC TPR domains via TPR1 is a general mechanism for activating kinesin-1. We relate this to activation by tryptophan-acidic cargoes, explaining how different cargoes activate kinesin-1 through related molecular mechanisms.


Asunto(s)
Cinesinas/química , Cinesinas/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Secuencia Conservada , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica
3.
Nucleic Acids Res ; 46(15): 7924-7937, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-29796667

RESUMEN

To maintain genome integrity, segmented double-stranded RNA viruses of the Reoviridae family must accurately select and package a complete set of up to a dozen distinct genomic RNAs. It is thought that the high fidelity segmented genome assembly involves multiple sequence-specific RNA-RNA interactions between single-stranded RNA segment precursors. These are mediated by virus-encoded non-structural proteins with RNA chaperone-like activities, such as rotavirus (RV) NSP2 and avian reovirus σNS. Here, we compared the abilities of NSP2 and σNS to mediate sequence-specific interactions between RV genomic segment precursors. Despite their similar activities, NSP2 successfully promotes inter-segment association, while σNS fails to do so. To understand the mechanisms underlying such selectivity in promoting inter-molecular duplex formation, we compared RNA-binding and helix-unwinding activities of both proteins. We demonstrate that octameric NSP2 binds structured RNAs with high affinity, resulting in efficient intramolecular RNA helix disruption. Hexameric σNS oligomerizes into an octamer that binds two RNAs, yet it exhibits only limited RNA-unwinding activity compared to NSP2. Thus, the formation of intersegment RNA-RNA interactions is governed by both helix-unwinding capacity of the chaperones and stability of RNA structure. We propose that this protein-mediated RNA selection mechanism may underpin the high fidelity assembly of multi-segmented RNA genomes in Reoviridae.


Asunto(s)
Chaperonas Moleculares/metabolismo , Orthoreovirus Aviar/metabolismo , ARN Viral/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas no Estructurales Virales/metabolismo , Secuencia de Bases , Genoma Viral/genética , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Conformación de Ácido Nucleico , Orthoreovirus Aviar/genética , Unión Proteica , Estructura Secundaria de Proteína , ARN Viral/química , ARN Viral/genética , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética
4.
Nat Commun ; 8(1): 83, 2017 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-28710463

RESUMEN

A correction has been published and is appended to both the HTML and PDF versions of this paper. The error has not been fixed in the paper.

5.
Nat Commun ; 8(1): 5, 2017 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-28232749

RESUMEN

Assembly of the major viral pathogens of the Picornaviridae family is poorly understood. Human parechovirus 1 is an example of such viruses that contains 60 short regions of ordered RNA density making identical contacts with the protein shell. We show here via a combination of RNA-based systematic evolution of ligands by exponential enrichment, bioinformatics analysis and reverse genetics that these RNA segments are bound to the coat proteins in a sequence-specific manner. Disruption of either the RNA coat protein recognition motif or its contact amino acid residues is deleterious for viral assembly. The data are consistent with RNA packaging signals playing essential roles in virion assembly. Their binding sites on the coat proteins are evolutionarily conserved across the Parechovirus genus, suggesting that they represent potential broad-spectrum anti-viral targets.The mechanism underlying packaging of genomic RNA into viral particles is not well understood for human parechoviruses. Here the authors identify short RNA motifs in the parechovirus genome that bind capsid proteins, providing approximately 60 specific interactions for virion assembly.


Asunto(s)
Proteínas de la Cápside/genética , Genoma Viral , Parechovirus/genética , ARN Viral/genética , Virión/genética , Ensamble de Virus , Secuencias de Aminoácidos , Emparejamiento Base , Sitios de Unión , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/ultraestructura , Biología Computacional , Secuencia Conservada , Expresión Génica , Humanos , Modelos Moleculares , Parechovirus/metabolismo , Parechovirus/ultraestructura , Unión Proteica , Pliegue del ARN , ARN Viral/metabolismo , ARN Viral/ultraestructura , Genética Inversa , Técnica SELEX de Producción de Aptámeros , Virión/metabolismo , Virión/ultraestructura
6.
Structure ; 20(2): 303-14, 2012 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-22285214

RESUMEN

The dengue virus (DENV) complex is composed of four distinct but serologically related flaviviruses, which together cause the present-day most important emerging viral disease. Although DENV infection induces lifelong immunity against viruses of the same serotype, the antibodies raised appear to contribute to severe disease in cases of heterotypic infections. Understanding the mechanisms of DENV neutralization by antibodies is, therefore, crucial for the design of vaccines that simultaneously protect against all four viruses. Here, we report a comparative, high-resolution crystallographic analysis of an "A-strand" murine monoclonal antibody, Mab 4E11, in complex with its target domain of the envelope protein from the four DENVs. Mab 4E11 is capable of neutralizing all four serotypes, and our study reveals the determinants of this cross-reactivity. The structures also highlight the mechanism by which A-strand Mabs disrupt the architecture of the mature virion, inducing premature fusion loop exposure and concomitant particle inactivation.


Asunto(s)
Anticuerpos Monoclonales de Origen Murino/química , Anticuerpos Neutralizantes/química , Antivirales/química , Virus del Dengue/inmunología , Proteínas del Envoltorio Viral/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales de Origen Murino/farmacología , Antivirales/farmacología , Secuencia de Bases , Células Cultivadas , Cristalografía por Rayos X , Virus del Dengue/fisiología , Epítopos/química , Humanos , Concentración 50 Inhibidora , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Propiedades de Superficie , Proteínas del Envoltorio Viral/inmunología
7.
EMBO J ; 31(3): 767-79, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22139356

RESUMEN

The four serotypes of dengue virus (DENV-1 to -4) cause the most important emerging viral disease. Protein E, the principal viral envelope glycoprotein, mediates fusion of the viral and endosomal membranes during virus entry and is the target of neutralizing antibodies. However, the epitopes of strongly neutralizing human antibodies have not been described despite their importance to vaccine development. The chimpanzee Mab 5H2 potently neutralizes DENV-4 by binding to domain I of E. The crystal structure of Fab 5H2 bound to E from DENV-4 shows that antibody binding prevents formation of the fusogenic hairpin conformation of E, which together with in-vitro assays, demonstrates that 5H2 neutralizes by blocking membrane fusion in the endosome. Furthermore, we show that human sera from patients recovering from DENV-4 infection contain antibodies that bind to the 5H2 epitope region on domain I. This study, thus, provides new information and tools for effective vaccine design to prevent dengue disease.


Asunto(s)
Anticuerpos Antivirales/inmunología , Virus del Dengue/inmunología , Pruebas de Neutralización , Primates/inmunología , Secuencia de Aminoácidos , Animales , Modelos Moleculares , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Proteínas Virales/química
8.
Nature ; 432(7013): 68-74, 2004 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-15525981

RESUMEN

The structure of the membrane-containing bacteriophage PRD1 has been determined by X-ray crystallography at about 4 A resolution. Here we describe the structure and location of proteins P3, P16, P30 and P31. Different structural proteins seem to have specialist roles in controlling virus assembly. The linearly extended P30 appears to nucleate the formation of the icosahedral facets (composed of trimers of the major capsid protein, P3) and acts as a molecular tape-measure, defining the size of the virus and cementing the facets together. Pentamers of P31 form the vertex base, interlocking with subunits of P3 and interacting with the membrane protein P16. The architectural similarities with adenovirus and one of the largest known virus particles PBCV-1 support the notion that the mechanism of assembly of PRD1 is scaleable and applies across the major viral lineage formed by these viruses.


Asunto(s)
Bacteriófago PRD1/química , Bacteriófago PRD1/ultraestructura , Proteínas Estructurales Virales/química , Virión/química , Ensamble de Virus , Secuencia de Aminoácidos , Cápside/química , Cápside/ultraestructura , Microscopía por Crioelectrón , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Cuaternaria de Proteína , Subunidades de Proteína/química , Proteínas Estructurales Virales/ultraestructura , Virión/ultraestructura
9.
Nature ; 432(7013): 122-5, 2004 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-15525993

RESUMEN

Membranes are essential for selectively controlling the passage of molecules in and out of cells and mediating the response of cells to their environment. Biological membranes and their associated proteins present considerable difficulties for structural analysis. Although enveloped viruses have been imaged at about 9 A resolution by cryo-electron microscopy and image reconstruction, no detailed crystallographic structure of a membrane system has been described. The structure of the bacteriophage PRD1 particle, determined by X-ray crystallography at about 4 A resolution, allows the first detailed analysis of a membrane-containing virus. The architecture of the viral capsid and its implications for virus assembly are presented in the accompanying paper. Here we show that the electron density also reveals the icosahedral lipid bilayer, beneath the protein capsid, enveloping the viral DNA. The viral membrane contains about 26,000 lipid molecules asymmetrically distributed between the membrane leaflets. The inner leaflet is composed predominantly of zwitterionic phosphatidylethanolamine molecules, facilitating a very close interaction with the viral DNA, which we estimate to be packaged to a pressure of about 45 atm, factors that are likely to be important during membrane-mediated DNA translocation into the host cell. In contrast, the outer leaflet is enriched in phosphatidylglycerol and cardiolipin, which show a marked lateral segregation within the icosahedral asymmetric unit. In addition, the lipid headgroups show a surprising degree of order.


Asunto(s)
Bacteriófago PRD1/química , Bacteriófago PRD1/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , ADN Viral/metabolismo , Proteínas Virales/metabolismo , Bacteriófago PRD1/genética , Cápside/química , Cápside/metabolismo , Cristalografía por Rayos X , ADN Viral/química , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Proteínas Virales/química , Ensamble de Virus
10.
J Struct Biol ; 139(2): 103-12, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12406692

RESUMEN

It has proved difficult to obtain well diffracting single crystals of macromolecular complexes rich in lipid. We report here the path that has led to crystals of the bacteriophage PRD1, a particle containing approximately 2,000 protein subunits from 18 different protein species, around 10 of which are integral membrane proteins associated with a host-derived lipid bilayer of some 12,500 lipid molecules. These crystals are capable of diffracting X-rays to Bragg spacings below 4A. It is hoped that some lessons learned from PRD1 will be applicable to other lipidic systems and that these crystals will allow, as a proof of principle, the determination of the structure of the virus in terms of a detailed atomic model.


Asunto(s)
Bacteriófago PRD1/química , ADN Viral/química , Bacteriófagos/metabolismo , Membrana Celular/metabolismo , Cristalografía por Rayos X , Electroforesis en Gel de Poliacrilamida , Membrana Dobles de Lípidos/química , Metabolismo de los Lípidos , Lípidos/química , Sistemas de Lectura Abierta , Salmonella enterica/metabolismo , Dispersión de Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...