Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS Genet ; 20(3): e1011187, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38457464

RESUMEN

BACKGROUND: Recent developments in CRISPR/Cas9 genome-editing tools have facilitated the introduction of precise alleles, including genetic intervals spanning several kilobases, directly into the embryo. However, the introduction of donor templates, via homology directed repair, can be erroneous or incomplete and these techniques often produce mosaic founder animals. Thus, newly generated alleles must be verified at the sequence level across the targeted locus. Screening for the presence of the desired mutant allele using traditional sequencing methods can be challenging due to the size of the interval to be sequenced, together with the mosaic nature of founders. METHODOLOGY/PRINCIPAL FINDINGS: In order to help disentangle the genetic complexity of these animals, we tested the application of Oxford Nanopore Technologies long-read sequencing at the targeted locus and found that the achievable depth of sequencing is sufficient to offset the sequencing error rate associated with the technology used to validate targeted regions of interest. We have assembled an analysis workflow that facilitates interrogating the entire length of a targeted segment in a single read, to confirm that the intended mutant sequence is present in both heterozygous animals and mosaic founders. We used this workflow to compare the output of PCR-based and Cas9 capture-based targeted sequencing for validation of edited alleles. CONCLUSION: Targeted long-read sequencing supports in-depth characterisation of all experimental models that aim to produce knock-in or conditional alleles, including those that contain a mix of genome-edited alleles. PCR- or Cas9 capture-based modalities bring different advantages to the analysis.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Animales , Sistemas CRISPR-Cas/genética , Alelos , Edición Génica/métodos , Reparación del ADN por Recombinación , Reacción en Cadena de la Polimerasa
2.
J Mol Endocrinol ; 73(1)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38381448

RESUMEN

Humans with the mutation Y509C in transducin beta like 1 X-linked (TBL1X HGNC ID HGNC:11585) have been reported to present with the combination of central congenital hypothyroidism and impaired hearing. TBL1X belongs to the WD40 repeat-containing protein family, is part of NCoR and SMRT corepressor complexes, and thereby involved in thyroid hormone signaling. In order to investigate the effects of the Y509C mutation in TBL1X on cellular thyroid hormone action, we aimed to generate a hemizygous male mouse cohort carrying the Tbl1x Y459C mutation which is equivalent to the human TBL1X Y509C mutation using CRISPR/Cas9 technology. Hemizygous male mice were small at birth and inactive. Their life span (median life span 93 days) was very short compared with heterozygous female mice (survived to >200 days with no welfare issues). About 52% of mice did not survive to weaning (133 mice). Of the remaining 118 mice, only 8 were hemizygous males who were unable to mate whereby it was impossible to generate homozygous female mice. In conclusion, the Tbl1x Y459C mutation in male mice has a marked negative effect on birth weight, survival, and fertility of male mice. The present findings are unexpected as they are in contrast to the mild phenotype in human males carrying the equivalent TBL1X Y509C mutation.


Asunto(s)
Longevidad , Mutación , Transducina , Animales , Femenino , Humanos , Masculino , Ratones , Hemicigoto , Longevidad/genética , Mutación/genética , Fenotipo , Transducina/genética , Transducina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...