Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 11(10)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37894080

RESUMEN

SARS-CoV-2 diagnostic tests have become an important tool for pandemic control. Among the alternatives for COVID-19 diagnosis, antigen rapid diagnostic tests (Ag-RDT) are very convenient and widely used. However, as SARS-CoV-2 variants may continuously emerge, the replacement of tests and reagents may be required to maintain the sensitivity of Ag-RDTs. Here, we describe the development and validation of an Ag-RDT during an outbreak of the Omicron variant, including the characterization of a new monoclonal antibody (anti-DTC-N 1B3 mAb) that recognizes the Nucleocapsid protein (N). The anti-DTC-N 1B3 mAb recognized the sequence TFPPTEPKKDKKK located at the C-terminus of the N protein of main SARS-CoV-2 variants of concern. Accordingly, the Ag-RDT prototypes using the anti-DTC-N 1B3 mAB detected all the SARS-CoV-2 variants-Wuhan, Alpha, Gamma, Delta, P2 and Omicron. The performance of the best prototype (sensitivity of 95.2% for samples with Ct ≤ 25; specificity of 98.3% and overall accuracy of 85.0%) met the WHO recommendations. Moreover, results from a patients' follow-up study indicated that, if performed within the first three days after onset of symptoms, the Ag-RDT displayed 100% sensitivity. Thus, the new mAb and the Ag-RDT developed herein may constitute alternative tools for COVID-19 point-of-care diagnosis and epidemiological surveillance.

2.
Genomics ; 113(6): 4109-4115, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34718131

RESUMEN

Genetic variants of SARS-CoV-2 have been emerging and circulating in many places across the world. Rapid detection of these variants is essential since their dissemination can impact transmission rates, diagnostic procedures, disease severity, response to vaccines or patient management. Sanger sequencing has been used as the preferred approach for variant detection among circulating human immunodeficiency and measles virus genotypes. Using primers to amplify a fragment of the SARS-CoV-2 genome encoding part of the Spike protein, we showed that Sanger sequencing allowed us to rapidly detect the introduction and spread of three distinct SARS-CoV-2 variants in two major Brazilian cities. In both cities, after the predominance of variants closely related to the virus first identified in China, the emergence of the P.2 variant was quickly followed by the detection of the P1 variant, which became dominant in less than one month after it was first detected.


Asunto(s)
COVID-19/virología , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , SARS-CoV-2/genética , Brasil/epidemiología , COVID-19/epidemiología , China , Ciudades , Humanos , Mutación , Filogenia , Glicoproteína de la Espiga del Coronavirus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...