RESUMEN
Since exacerbated inflammation and microvascular leakage are hallmarks of dengue virus (DENV) infection, here we interrogated whether systemic activation of the contact/kallikrein-kinin system (KKS) might hamper endothelial function. In vitro assays showed that dextran sulfate, a potent contact activator, failed to generate appreciable levels of activated plasma kallikrein (PKa) in the large majority of samples from a dengue cohort (n = 70), irrespective of severity of clinical symptoms. Impaired formation of PKa in dengue-plasmas correlated with the presence of cleaved Factor XII and high molecular weight kininogen (HK), suggesting that the prothrombogenic contact system is frequently triggered during the course of infection. Using two pathogenic arboviruses, DENV or Zika virus (ZIKV), we then asked whether exogenous BK could influence the outcome of infection of human brain microvascular endothelial cells (HBMECs). Unlike the unresponsive phenotype of Zika-infected HBMECs, we found that BK, acting via B2R, vigorously stimulated DENV-2 replication by reverting nitric oxide-driven apoptosis of endothelial cells. Using the mouse model of cerebral dengue infection, we next demonstrated that B2R targeting by icatibant decreased viral load in brain tissues. In summary, our study suggests that contact/KKS activation followed by BK-induced enhancement of DENV replication in the endothelium may underlie microvascular pathology in dengue.
RESUMEN
Protective adaptive immunity to Zika virus (ZIKV) has been mainly attributed to cytotoxic CD8+ T cells and neutralizing antibodies, while the participation of CD4+ T cells in resistance has remained largely uncharacterized. Here, we show a neutralizing antibody response, dependent on CD4+ T cells and IFNγ signaling, which we detected during the first week of infection and is associated with reduced viral load in the brain, prevention of rapid disease onset and survival. We demonstrate participation of these components in the resistance to ZIKV during primary infection and in murine adoptive transfer models of heterologous ZIKV infection in a background of IFNR deficiency. The protective effect of adoptively transferred CD4+ T cells requires IFNγ signaling, CD8+ T cells and B lymphocytes in recipient mice. Together, this indicates the importance of CD4+ T cell responses in future vaccine design for ZIKV.
Asunto(s)
Inmunidad Adaptativa , Traslado Adoptivo , Anticuerpos Antivirales/inmunología , Linfocitos T CD4-Positivos/inmunología , Interferón gamma/metabolismo , Infección por el Virus Zika/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Peso Corporal , Chlorocebus aethiops , Femenino , Inmunoglobulina G , Masculino , Ratones , Células Vero , Virus ZikaRESUMEN
Zika virus (ZIKV) has been associated to central nervous system (CNS) harm, and virus was detected in the brain and cerebrospinal fluids of microcephaly and meningoencephalitis cases. However, the mechanism by which the virus reaches the CNS is unclear. Here, we addressed the effects of ZIKV replication in human brain microvascular endothelial cells (HBMECs), as an in vitro model of blood brain barrier (BBB), and evaluated virus extravasation and BBB integrity in an in vivo mouse experimental model. HBMECs were productively infected by African and Brazilian ZIKV strains (ZIKVMR766 and ZIKVPE243), which induce increased production of type I and type III IFN, inflammatory cytokines and chemokines. Infection with ZIKVMR766 promoted earlier cellular death, in comparison to ZIKVPE243, but infection with either strain did not result in enhanced endothelial permeability. Despite the maintenance of endothelial integrity, infectious virus particles crossed the monolayer by endocytosis/exocytosis-dependent replication pathway or by transcytosis. Remarkably, both viruses' strains infected IFNAR deficient mice, with high viral load being detected in the brains, without BBB disruption, which was only detected at later time points after infection. These data suggest that ZIKV infects and activates endothelial cells, and might reach the CNS through basolateral release, transcytosis or transinfection processes. These findings further improve the current knowledge regarding ZIKV dissemination pathways.