Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mod Pathol ; 37(12): 100608, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39241829

RESUMEN

The diagnostic assessment of thyroid nodules is hampered by the persistence of uncertainty in borderline cases and further complicated by the inclusion of noninvasive follicular tumor with papillary-like nuclear features (NIFTP) as a less aggressive alternative to papillary thyroid carcinoma (PTC). In this setting, computational methods might facilitate the diagnostic process by unmasking key nuclear characteristics of NIFTP. The main aims of this work were to (1) identify morphometric features of NIFTP and PTC that are interpretable for the human eye and (2) develop a deep learning model for multiclass segmentation as a support tool to reduce diagnostic variability. Our findings confirmed that nuclei in NIFTP and PTC share multiple characteristics, setting them apart from hyperplastic nodules (HP). The morphometric analysis identified 15 features that can be translated into nuclear alterations readily understandable by pathologists, such as a remarkable internuclear homogeneity for HP in contrast to a major complexity in the chromatin texture of NIFTP and to the peculiar pattern of nuclear texture variability of PTC. A few NIFTP cases with available next-generation sequencing data were also analyzed to initially explore the impact of RAS-related mutations on nuclear morphometry. Finally, a pixel-based deep learning model was trained and tested on whole-slide images of NIFTP, PTC, and HP cases. The model, named NUTSHELL (NUclei from Thyroid tumors Segmentation to Highlight Encapsulated Low-malignant Lesions), successfully detected and classified the majority of nuclei in all whole-slide image tiles, showing comparable results with already well-established pathology nuclear scores. NUTSHELL provides an immediate overview of NIFTP areas and can be used to detect microfoci of PTC within extensive glandular samples or identify lymph node metastases. NUTSHELL can be run inside WSInfer with an easy rendering in QuPath, thus facilitating the democratization of digital pathology.

2.
Sensors (Basel) ; 23(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36616926

RESUMEN

In order to detect special nuclear materials and other radioactive materials in Security and Defense scenarios, normally, a combination of neutron and gamma-ray detection systems is used. In particular, to avoid illicit traffic of special nuclear materials and radioactive sources/materials, radiation portal monitors are placed at seaports to inspect shipping-container cargo. Despite their large volume (high efficiency), these detection systems are expensive, and therefore only a fraction of these containers are inspected. In this work, a novel mobile radiation detection system is presented, based on an EJ-200 plastic scintillator for the detection of gamma rays and beta particles, and a neutron detector EJ-426HD plastic scintillator (with 6Li) embedded in a compact and modular moderator. The use of silicon photomultipliers in both detectors presented advantages such as lightweight, compactness, and low power consumption. The developed detection system was integrated in a highly maneuverable multirotor. Monte Carlo simulations were validated by laboratory measurements and field tests were performed using real gamma-ray and neutron sources. The detection and localization within one meter was achieved using a maximum likelihood estimation algorithm for 137Cs sources (4 MBq), as well as the detection of 241Am-beryllium (1.45 GBq) source placed inside the shipping container.


Asunto(s)
Monitoreo de Radiación , Conteo por Cintilación , Rayos gamma , Neutrones , Plásticos
3.
BMC Bioinformatics ; 22(Suppl 2): 78, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33902438

RESUMEN

BACKGROUND: Genome-wide reconstructions of metabolism opened the way to thorough investigations of cell metabolism for health care and industrial purposes. However, the predictions offered by Flux Balance Analysis (FBA) can be strongly affected by the choice of flux boundaries, with particular regard to the flux of reactions that sink nutrients into the system. To mitigate possible errors introduced by a poor selection of such boundaries, a rational approach suggests to focus the modeling efforts on the pivotal ones. METHODS: In this work, we present a methodology for the automatic identification of the key fluxes in genome-wide constraint-based models, by means of variance-based sensitivity analysis. The goal is to identify the parameters for which a small perturbation entails a large variation of the model outcomes, also referred to as sensitive parameters. Due to the high number of FBA simulations that are necessary to assess sensitivity coefficients on genome-wide models, our method exploits a master-slave methodology that distributes the computation on massively multi-core architectures. We performed the following steps: (1) we determined the putative parameterizations of the genome-wide metabolic constraint-based model, using Saltelli's method; (2) we applied FBA to each parameterized model, distributing the massive amount of calculations over multiple nodes by means of MPI; (3) we then recollected and exploited the results of all FBA runs to assess a global sensitivity analysis. RESULTS: We show a proof-of-concept of our approach on latest genome-wide reconstructions of human metabolism Recon2.2 and Recon3D. We report that most sensitive parameters are mainly associated with the intake of essential amino acids in Recon2.2, whereas in Recon 3D they are associated largely with phospholipids. We also illustrate that in most cases there is a significant contribution of higher order effects. CONCLUSION: Our results indicate that interaction effects between different model parameters exist, which should be taken into account especially at the stage of calibration of genome-wide models, supporting the importance of a global strategy of sensitivity analysis.


Asunto(s)
Redes y Vías Metabólicas , Modelos Biológicos , Genoma , Humanos , Análisis de Flujos Metabólicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...