Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 43(13): 2222-2241, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36868853

RESUMEN

Selective serotonin reuptake inhibitors (SSRIs) are the most prescribed treatment for individuals experiencing major depressive disorder. The therapeutic mechanisms that take place before, during, or after SSRIs bind the serotonin transporter (SERT) are poorly understood, partially because no studies exist on the cellular and subcellular pharmacokinetic properties of SSRIs in living cells. We studied escitalopram and fluoxetine using new intensity-based, drug-sensing fluorescent reporters targeted to the plasma membrane, cytoplasm, or endoplasmic reticulum (ER) of cultured neurons and mammalian cell lines. We also used chemical detection of drug within cells and phospholipid membranes. The drugs attain equilibrium in neuronal cytoplasm and ER at approximately the same concentration as the externally applied solution, with time constants of a few s (escitalopram) or 200-300 s (fluoxetine). Simultaneously, the drugs accumulate within lipid membranes by ≥18-fold (escitalopram) or 180-fold (fluoxetine), and possibly by much larger factors. Both drugs leave cytoplasm, lumen, and membranes just as quickly during washout. We synthesized membrane-impermeant quaternary amine derivatives of the two SSRIs. The quaternary derivatives are substantially excluded from membrane, cytoplasm, and ER for >2.4 h. They inhibit SERT transport-associated currents sixfold or 11-fold less potently than the SSRIs (escitalopram or fluoxetine derivative, respectively), providing useful probes for distinguishing compartmentalized SSRI effects. Although our measurements are orders of magnitude faster than the therapeutic lag of SSRIs, these data suggest that SSRI-SERT interactions within organelles or membranes may play roles during either the therapeutic effects or the antidepressant discontinuation syndrome.SIGNIFICANCE STATEMENT Selective serotonin reuptake inhibitors stabilize mood in several disorders. In general, these drugs bind to SERT, which clears serotonin from CNS and peripheral tissues. SERT ligands are effective and relatively safe; primary care practitioners often prescribe them. However, they have several side effects and require 2-6 weeks of continuous administration until they act effectively. How they work remains perplexing, contrasting with earlier assumptions that the therapeutic mechanism involves SERT inhibition followed by increased extracellular serotonin levels. This study establishes that two SERT ligands, fluoxetine and escitalopram, enter neurons within minutes, while simultaneously accumulating in many membranes. Such knowledge will motivate future research, hopefully revealing where and how SERT ligands engage their therapeutic target(s).


Asunto(s)
Trastorno Depresivo Mayor , Inhibidores Selectivos de la Recaptación de Serotonina , Animales , Humanos , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Fluoxetina/farmacología , Escitalopram , Serotonina/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Retículo Endoplásmico/metabolismo , Citalopram/farmacología , Mamíferos
3.
J Am Chem Soc ; 144(19): 8480-8486, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35446570

RESUMEN

We report a reagentless, intensity-based S-methadone fluorescent sensor, iS-methadoneSnFR, consisting of a circularly permuted GFP inserted within the sequence of a mutated bacterial periplasmic binding protein (PBP). We evolved a previously reported nicotine-binding PBP to become a selective S-methadone-binding sensor, via three mutations in the PBP's second shell and hinge regions. iS-methadoneSnFR displays the necessary sensitivity, kinetics, and selectivity─notably enantioselectivity against R-methadone─for biological applications. Robust iS-methadoneSnFR responses in human sweat and saliva and mouse serum enable diagnostic uses. Expression and imaging in mammalian cells demonstrate that S-methadone enters at least two organelles and undergoes acid trapping in the Golgi apparatus, where opioid receptors can signal. This work shows a straightforward strategy in adapting existing PBPs to serve real-time applications ranging from subcellular to personal pharmacokinetics.


Asunto(s)
Agonistas Nicotínicos , Proteínas de Unión Periplasmáticas , Animales , Mamíferos/metabolismo , Metadona , Ratones , Mutación , Orgánulos/metabolismo
4.
Elife ; 112022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34982029

RESUMEN

Nicotinic partial agonists provide an accepted aid for smoking cessation and thus contribute to decreasing tobacco-related disease. Improved drugs constitute a continued area of study. However, there remains no reductionist method to examine the cellular and subcellular pharmacokinetic properties of these compounds in living cells. Here, we developed new intensity-based drug-sensing fluorescent reporters (iDrugSnFRs) for the nicotinic partial agonists dianicline, cytisine, and two cytisine derivatives - 10-fluorocytisine and 9-bromo-10-ethylcytisine. We report the first atomic-scale structures of liganded periplasmic binding protein-based biosensors, accelerating development of iDrugSnFRs and also explaining the activation mechanism. The nicotinic iDrugSnFRs detect their drug partners in solution, as well as at the plasma membrane (PM) and in the endoplasmic reticulum (ER) of cell lines and mouse hippocampal neurons. At the PM, the speed of solution changes limits the growth and decay rates of the fluorescence response in almost all cases. In contrast, we found that rates of membrane crossing differ among these nicotinic drugs by >30-fold. The new nicotinic iDrugSnFRs provide insight into the real-time pharmacokinetic properties of nicotinic agonists and provide a methodology whereby iDrugSnFRs can inform both pharmaceutical neuroscience and addiction neuroscience.


Asunto(s)
Alcaloides/química , Azepinas/química , Compuestos Heterocíclicos de 4 o más Anillos/química , Agonistas Nicotínicos/química , Cese del Hábito de Fumar , Alcaloides/metabolismo , Animales , Azocinas/química , Azocinas/metabolismo , Fluorescencia , Humanos , Ligandos , Ratones , Quinolizinas/química , Quinolizinas/metabolismo
5.
Front Cell Neurosci ; 13: 499, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31798415

RESUMEN

The target for the "rapid" (<24 h) antidepressant effects of S-ketamine is unknown, vitiating programs to rationally develop more effective rapid antidepressants. To describe a drug's target, one must first understand the compartments entered by the drug, at all levels-the organ, the cell, and the organelle. We have, therefore, developed molecular tools to measure the subcellular, organellar pharmacokinetics of S-ketamine. The tools are genetically encoded intensity-based S-ketamine-sensing fluorescent reporters, iSKetSnFR1 and iSKetSnFR2. In solution, these biosensors respond to S-ketamine with a sensitivity, S-slope = delta(F/F0)/(delta[S-ketamine]) of 0.23 and 1.9/µM, respectively. The iSKetSnFR2 construct allows measurements at <0.3 µM S-ketamine. The iSKetSnFR1 and iSKetSnFR2 biosensors display >100-fold selectivity over other ligands tested, including R-ketamine. We targeted each of the sensors to either the plasma membrane (PM) or the endoplasmic reticulum (ER). Measurements on these biosensors expressed in Neuro2a cells and in human dopaminergic neurons differentiated from induced pluripotent stem cells (iPSCs) show that S-ketamine enters the ER within a few seconds after appearing in the external solution near the PM, then leaves as rapidly after S-ketamine is removed from the extracellular solution. In cells, S-slopes for the ER and PM-targeted sensors differ by <2-fold, indicating that the ER [S-ketamine] is less than 2-fold different from the extracellular [S-ketamine]. Organelles represent potential compartments for the engagement of S-ketamine with its antidepressant target, and potential S-ketamine targets include organellar ion channels, receptors, and transporters.

6.
Front Pharmacol ; 8: 641, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29033834

RESUMEN

(E)-5-(Pyrimidin-5-yl)-1,2,3,4,7,8-hexahydroazocine (TC299423) is a novel agonist for nicotinic acetylcholine receptors (nAChRs). We examined its efficacy, affinity, and potency for α6ß2∗ (α6ß2-containing), α4ß2∗, and α3ß4∗ nAChRs, using [125I]-epibatidine binding, whole-cell patch-clamp recordings, synaptosomal 86Rb+ efflux, [3H]-dopamine release, and [3H]-acetylcholine release. TC299423 displayed an EC50 of 30-60 nM for α6ß2∗ nAChRs in patch-clamp recordings and [3H]-dopamine release assays. Its potency for α6ß2∗ in these assays was 2.5-fold greater than that for α4ß2∗, and much greater than that for α3ß4∗-mediated [3H]-acetylcholine release. We observed no major off-target binding on 70 diverse molecular targets. TC299423 was bioavailable after intraperitoneal or oral administration. Locomotor assays, measured with gain-of-function, mutant α6 (α6L9'S) nAChR mice, show that TC299423 elicits α6ß2∗ nAChR-mediated responses at low doses. Conditioned place preference assays show that low-dose TC299423 also produces significant reward in α6L9'S mice, and modest reward in WT mice, through a mechanism that probably involves α6(non-α4)ß2∗ nAChRs. However, TC299423 did not suppress nicotine self-administration in rats, indicating that it did not block nicotine reinforcement in the dosage range that was tested. In a hot-plate test, TC299423 evoked antinociceptive responses in mice similar to those of nicotine. TC299423 and nicotine similarly inhibited mouse marble burying as a measure of anxiolytic effects. Taken together, our data suggest that TC299423 will be a useful small-molecule agonist for future in vitro and in vivo studies of nAChR function and physiology.

7.
J Vis Exp ; (120)2017 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-28287593

RESUMEN

In Parkinson's Disease (PD) there is widespread neuronal loss throughout the brain with pronounced degeneration of dopaminergic neurons in the SNc, leading to bradykinesia, rigidity, and tremor. The identification of living dopaminergic neurons in primary Ventral Mesencephalic (VM) cultures using a fluorescent marker provides an alternative way to study the selective vulnerability of these neurons without relying on the immunostaining of fixed cells. Here, we isolate, dissociate, and culture mouse VM neurons for 3 weeks. We then identify dopaminergic neurons in the cultures using eGFP fluorescence (driven by a Tyrosine Hydroxylase (TH) promoter). Individual neurons are harvested into microcentrifuge tubes using glass micropipettes. Next, we lyse the harvested cells, and conduct cDNA synthesis and transposon-mediated "tagmentation" to produce single cell RNA-Seq libraries1,2,3,4,5. After passing a quality-control check, single-cell libraries are sequenced and subsequent analysis is carried out to measure gene expression. We report transcriptome results for individual dopaminergic and GABAergic neurons isolated from midbrain cultures. We report that 100% of the live TH-eGFP cells that were harvested and sequenced were dopaminergic neurons. These techniques will have widespread applications in neuroscience and molecular biology.


Asunto(s)
Neuronas Dopaminérgicas/citología , Proteínas Fluorescentes Verdes/genética , Mesencéfalo/citología , Análisis de Secuencia de ARN , Tirosina 3-Monooxigenasa/genética , Animales , Células Cultivadas , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Neuronas GABAérgicas/metabolismo , Expresión Génica , Ratones , Neuronas/fisiología , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas , Reproducibilidad de los Resultados
8.
PLoS One ; 11(6): e0158032, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27336596

RESUMEN

A number of mutations in α4ß2-containing (α4ß2*) nicotinic acetylcholine (ACh) receptors (nAChRs) are linked to autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE), including one in the ß2 subunit called ß2V287L. Two α4ß2* subtypes with different subunit stoichiometries and ACh sensitivities co-exist in the brain, a high-sensitivity subtype with (α4)2(ß2)3 subunit stoichiometry and a low-sensitivity subtype with (α4)3(ß2)2 stoichiometry. The α5 nicotinic subunit also co-assembles with α4ß2 to form a high-sensitivity α5α4ß2 nAChR. Previous studies suggest that the ß2V287L mutation suppresses low-sensitivity α4ß2* nAChR expression in a knock-in mouse model and also that α5 co-expression improves the surface expression of ADNFLE mutant nAChRs in a cell line. To test these hypotheses further, we expressed mutant and wild-type (WT) nAChRs in oocytes and mammalian cell lines, and measured the effects of the ß2V287L mutation on surface receptor expression and the ACh response using electrophysiology, a voltage-sensitive fluorescent dye, and superecliptic pHluorin (SEP). The ß2V287L mutation reduced the EC50 values of high- and low-sensitivity α4ß2 nAChRs expressed in Xenopus oocytes for ACh by a similar factor and suppressed low-sensitivity α4ß2 expression. In contrast, it did not affect the EC50 of α5α4ß2 nAChRs for ACh. Measurements of the ACh responses of WT and mutant nAChRs expressed in mammalian cell lines using a voltage-sensitive fluorescent dye and whole-cell patch-clamping confirm the oocyte data. They also show that, despite reducing the maximum response, ß2V287L increased the α4ß2 response to a sub-saturating ACh concentration (1 µM). Finally, imaging SEP-tagged α5, α4, ß2, and ß2V287L subunits showed that ß2V287L reduced total α4ß2 nAChR surface expression, increased the number of ß2 subunits per α4ß2 receptor, and increased surface α5α4ß2 nAChR expression. Thus, the ß2V287L mutation alters the subunit composition and sensitivity of α4ß2 nAChRs, and increases α5α4ß2 surface expression.


Asunto(s)
Epilepsia del Lóbulo Frontal/genética , Regulación de la Expresión Génica , Receptores Nicotínicos/genética , Animales , Encéfalo/metabolismo , Membrana Celular/metabolismo , Epilepsia del Lóbulo Frontal/metabolismo , Células HEK293 , Humanos , Ratones , Mutación , Oocitos/metabolismo , Técnicas de Placa-Clamp , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Nicotínicos/metabolismo , Xenopus laevis
9.
J Neurosci ; 36(1): 65-79, 2016 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-26740650

RESUMEN

Retrospective epidemiological studies show an inverse correlation between susceptibility to Parkinson's disease and a person's history of tobacco use. Animal model studies suggest nicotine as a neuroprotective agent and nicotinic acetylcholine (ACh) receptors (nAChRs) as targets for neuroprotection, but the underlying neuroprotective mechanism(s) are unknown. We cultured mouse ventral midbrain neurons for 3 weeks. Ten to 20% of neurons were dopaminergic (DA), revealed by tyrosine hydroxylase (TH) immunoreactivity. We evoked mild endoplasmic reticulum (ER) stress with tunicamycin (Tu), producing modest increases in the level of nuclear ATF6, phosphorylated eukaryotic initiation factor 2α, nuclear XBP1, and the downstream proapoptotic effector nuclear C/EBP homologous protein. We incubated cultures for 2 weeks with 200 nm nicotine, the approximate steady-state concentration between cigarette smoking or vaping, or during nicotine patch use. Nicotine incubation suppressed Tu-induced ER stress and the unfolded protein response (UPR). Study of mice with fluorescent nAChR subunits showed that the cultured TH+ neurons displayed α4, α6, and ß3 nAChR subunit expression and ACh-evoked currents. Gene expression profile in cultures from TH-eGFP mice showed that the TH+ neurons also express several other genes associated with DA release. Nicotine also upregulated ACh-induced currents in DA neurons by ∼2.5-fold. Thus, nicotine, at a concentration too low to activate an appreciable fraction of plasma membrane nAChRs, induces two sequelae of pharmacological chaperoning in the ER: UPR suppression and nAChR upregulation. Therefore, one mechanism of neuroprotection by nicotine is pharmacological chaperoning, leading to UPR suppression. Measuring this pathway may help in assessing neuroprotection. SIGNIFICANCE STATEMENT: Parkinson's disease (PD) cannot yet be cured or prevented. However, many retrospective epidemiological studies reveal that PD is diagnosed less frequently in tobacco users. Existing programs attempting to develop nicotinic drugs that might exert this apparent neuroprotective effect are asking whether agonists, antagonists, partial agonists, or channel blockers show the most promise. The underlying logic resembles the previous development of varenicline for smoking cessation. We studied whether, and how, nicotine produces neuroprotective effects in cultured dopaminergic neurons, an experimentally tractable, mechanistically revealing neuronal system. We show that nicotine, operating via nicotinic receptors, does protect these neurons against endoplasmic reticulum stress. However, the mechanism is probably "inside-out": pharmacological chaperoning in the endoplasmic reticulum. This cellular-level insight could help to guide neuroprotective strategies.


Asunto(s)
Potenciales de Acción/fisiología , Neuronas Dopaminérgicas/fisiología , Nicotiana/química , Nicotina/administración & dosificación , Humo , Respuesta de Proteína Desplegada/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Células Cultivadas , Neuronas Dopaminérgicas/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/administración & dosificación , Respuesta de Proteína Desplegada/efectos de los fármacos
10.
Biochem Pharmacol ; 86(8): 1074-83, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23939186

RESUMEN

Dopaminergic neurons in the substantia nigra pars compacta (SNc) degenerate in Parkinson's disease. These neurons robustly express several nicotinic acetylcholine receptor (nAChR) subtypes. Smoking appears to be neuroprotective for Parkinson's disease but the mechanism is unknown. To determine whether chronic nicotine-induced changes in gene expression contribute to the neuroprotective effects of smoking, we develop methods to measure the effect of prolonged nicotine exposure on the SNc neuronal transcriptome in an unbiased manner. Twenty neurons were collected using laser-capture microscopy and transcriptional changes were assessed using RNA deep sequencing. These results are the first whole-transcriptome analyses of chronic nicotine treatment in SNc neurons. Overall, 129 genes were significantly regulated: 67 upregulated, 62 downregulated. Nicotine-induced relief of endoplasmic reticulum (ER) stress has been postulated as a potential mechanism for the neuroprotective effects of smoking. Chronic nicotine did not significantly affect the expression of ER stress-related genes, nor of dopamine-related or nAChR genes, but it did modulate expression of 129 genes that could be relevant to the neuroprotective effects of smoking, including genes involved in (1) the ubiquitin-proteasome pathway, (2) cell cycle regulation, (3) chromatin modification, and (4) DNA binding and RNA regulation. We also report preliminary transcriptome data for single-cell dopaminergic and GABAergic neurons isolated from midbrain cultures. These novel techniques will facilitate advances in understanding the mechanisms taking place at the cellular level and may have applications elsewhere in the fields of neuroscience and molecular biology. The results give an emerging picture of the role of nicotine on the SNc and on dopaminergic neurons.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Nicotina/farmacología , Animales , Dopamina/metabolismo , Genoma , Ratones , Ratones Endogámicos C57BL , Nicotina/administración & dosificación , Estrés Fisiológico , Sustancia Negra/citología , Transcriptoma , Ácido gamma-Aminobutírico/metabolismo
11.
J Biol Chem ; 288(29): 21029-21042, 2013 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-23720773

RESUMEN

A modified invertebrate glutamate-gated Cl(-) channel (GluCl αß) was previously employed to allow pharmacologically induced silencing of electrical activity in CNS neurons upon exposure to the anthelmintic drug ivermectin (IVM). Usefulness of the previous receptor was limited by 1) the high concentration of IVM necessary to elicit a consistent silencing phenotype, raising concern about potential side effects, and 2) the variable extent of neuronal spike suppression, due to variations in the co-expression levels of the fluorescent protein-tagged α and ß subunits. To address these issues, mutant receptors generated via rational protein engineering strategies were examined for improvement. Introduction of a gain-of-function mutation (L9'F) in the second transmembrane domain of the α subunit appears to facilitate ß subunit incorporation and substantially increase heteromeric GluCl αß sensitivity to IVM. Removal of an arginine-based endoplasmic reticulum retention motif (RSR mutated to AAA) from the intracellular loop of the ß subunit further promotes heteromeric expression at the plasma membrane possibly by preventing endoplasmic reticulum-associated degradation of the ß subunit rather than simply reducing endoplasmic reticulum retention. A monomeric XFP (mXFP) mutation that prevents fluorescent protein dimerization complements the mutant channel effects. Expression of the newly engineered GluCl opt α-mXFP L9'F + opt ß-mXFP Y182F RSR_AAA receptor in dissociated neuronal cultures markedly increases conductance and reduces variability in spike suppression at 1 nm IVM. This receptor, named "GluClv2.0," is an improved tool for IVM-induced silencing.


Asunto(s)
Canales de Cloruro/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Ivermectina/farmacología , Neuronas/fisiología , Ingeniería de Proteínas , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Canales de Cloruro/química , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Ácido Glutámico/genética , Células HEK293 , Humanos , Proteínas Luminiscentes/metabolismo , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutación/genética , Neuronas/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Subunidades de Proteína/metabolismo , Ratas , Ratas Wistar
12.
Pharmacol Biochem Behav ; 103(3): 603-21, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23123803

RESUMEN

Several mutations in α4 or ß2 nicotinic receptor subunits are linked to autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE). One such missense mutation in the gene encoding the ß2 neuronal nicotinic acetylcholine receptor (nAChR) subunit (CHRNB2) is a valine-to-leucine substitution in the second transmembrane domain at position 287 (ß2VL). Previous studies indicated that the ß2VL mutation in mice alters circadian rhythm consistent with sleep alterations observed in ADNFLE patients (Xu et al., 2011). The current study investigates changes in nicotinic receptor function and expression that may explain the behavioral phenotype of ß2VL mice. No differences in ß2 mRNA expression were found between wild-type (WT) and heterozygous (HT) or homozygous mutant (MT) mice. However, antibody and ligand binding indicated that the mutation resulted in a reduction in receptor protein. Functional consequences of the ß2VL mutation were assessed biochemically using crude synaptosomes. A gene-dose dependent increase in sensitivity to activation by acetylcholine and decrease in maximal nAChR-mediated [(3)H]-dopamine release and (86)Rb efflux were observed. Maximal nAChR-mediated [(3)H]-GABA release in the cortex was also decreased in the MT, but maximal [(3)H]-GABA release was retained in the hippocampus. Behaviorally both HT and MT mice demonstrated increased sensitivity to nicotine-induced hypolocomotion and hypothermia. Furthermore, WT mice display only a tonic-clonic seizure (EEG recordable) 3 min after injection of a high dose of nicotine, while MT mice also display a dystonic arousal complex (non-EEG recordable) event 30s after nicotine injection. Data indicate decreases in maximal response for certain measures are larger than expected given the decrease in receptor expression.


Asunto(s)
Sensibilización del Sistema Nervioso Central/fisiología , Nicotina/farmacología , Terminales Presinápticos/fisiología , Receptores Nicotínicos/fisiología , Acetilcolina/farmacología , Animales , Temperatura Corporal/efectos de los fármacos , Temperatura Corporal/genética , Temperatura Corporal/fisiología , Sensibilización del Sistema Nervioso Central/genética , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Dopamina/metabolismo , Distonía/inducido químicamente , Distonía/genética , Distonía/fisiopatología , Técnicas de Sustitución del Gen , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Ratones , Actividad Motora/efectos de los fármacos , Actividad Motora/genética , Actividad Motora/fisiología , Mutación Missense/genética , Nicotina/administración & dosificación , Terminales Presinápticos/efectos de los fármacos , Ensayo de Unión Radioligante/métodos , Receptores Nicotínicos/biosíntesis , Receptores Nicotínicos/genética , Radioisótopos de Rubidio , Convulsiones/inducido químicamente , Convulsiones/genética , Convulsiones/metabolismo , Convulsiones/fisiopatología , Sinaptosomas/efectos de los fármacos , Sinaptosomas/metabolismo , Ácido gamma-Aminobutírico/metabolismo
13.
FASEB J ; 24(1): 49-57, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19720621

RESUMEN

Recent studies suggest that high-affinity neuronal nicotinic acetylcholine receptors (nAChRs) containing alpha4 and beta2 subunits (alpha4beta2*) functionally interact with G-protein-coupled dopamine (DA) D(2) receptors in basal ganglia. We hypothesized that if a functional interaction between these receptors exists, then mice expressing an M2 point mutation (Leu9'Ala) rendering alpha4 nAChRs hypersensitive to ACh may exhibit altered sensitivity to a D(2)-receptor agonist. When challenged with the D(2)R agonist, quinpirole (0.5-10 mg/kg), Leu9'Ala mice, but not wild-type (WT) littermates, developed severe, reversible motor impairment characterized by rigidity, catalepsy, akinesia, and tremor. While striatal DA tissue content, baseline release, and quinpirole-induced DA depletion did not differ between Leu9'Ala and WT mice, quinpirole dramatically increased activity of cholinergic striatal interneurons only in mutant animals, as measured by increased c-Fos expression in choline acetyltransferase (ChAT)-positive interneurons. Highlighting the importance of the cholinergic system in this mouse model, inhibiting the effects of ACh by blocking muscarinic receptors, or by selectively activating hypersensitive nAChRs with nicotine, rescued motor symptoms. This novel mouse model mimics the imbalance between striatal DA/ACh function associated with severe motor impairment in disorders such as Parkinson's disease, and the data suggest that a D(2)R-alpha4*-nAChR functional interaction regulates cholinergic interneuron activity.


Asunto(s)
Trastornos Parkinsonianos/etiología , Receptores de Dopamina D2/metabolismo , Receptores Nicotínicos/fisiología , Acetilcolina/fisiología , Sustitución de Aminoácidos , Animales , Catalepsia/etiología , Fibras Colinérgicas/efectos de los fármacos , Fibras Colinérgicas/fisiología , Agonistas de Dopamina/farmacología , Epilepsia Generalizada/etiología , Femenino , Interneuronas/efectos de los fármacos , Interneuronas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Rigidez Muscular/etiología , Mutagénesis Sitio-Dirigida , Trastornos Parkinsonianos/genética , Trastornos Parkinsonianos/fisiopatología , Quinpirol/farmacología , Receptores Nicotínicos/química , Receptores Nicotínicos/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temblor/etiología
14.
Mol Pharmacol ; 75(5): 1137-48, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19237585

RESUMEN

Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is linked with high penetrance to several distinct nicotinic receptor (nAChR) mutations. We studied (alpha4)(3)(beta2)(2) versus (alpha4)(2)(beta2)(3) subunit stoichiometry for five channel-lining M2 domain mutations: S247F, S252L, 776ins3 in alpha4, V287L, and V287M in beta2. alpha4 and beta2 subunits were constructed with all possible combinations of mutant and wild-type (WT) M2 regions, of cyan and yellow fluorescent protein, and of fluorescent and nonfluorescent M3-M4 loops. Sixteen fluorescent subunit combinations were expressed in N2a cells. Förster resonance energy transfer (FRET) was analyzed by donor recovery after acceptor photobleaching and by pixel-by-pixel sensitized emission, with confirmation by fluorescence intensity ratios. Because FRET efficiency is much greater for adjacent than for nonadjacent subunits and the alpha4 and beta2 subunits occupy specific positions in nAChR pentamers, observed FRET efficiencies from (alpha4)(3)(beta2)(2) carrying fluorescent alpha4 subunits were significantly higher than for (alpha4)(2)(beta2)(3); the converse was found for fluorescent beta2 subunits. All tested ADNFLE mutants produced 10 to 20% increments in the percentage of intracellular (alpha4)(3)(beta2)(2) receptors compared with WT subunits. In contrast, 24- to 48-h nicotine (1 muM) exposure increased the proportion of (alpha4)(2)(beta2)(3) in WT receptors and also returned subunit stoichiometry to WT levels for alpha4S248F and beta2V287L nAChRs. These observations may be relevant to the decreased seizure frequency in patients with ADNFLE who use tobacco products or nicotine patches. Fluorescence-based investigations of nAChR subunit stoichiometry may provide efficient drug discovery methods for nicotine addiction or for other disorders that result from dysregulated nAChRs.


Asunto(s)
Epilepsia del Lóbulo Frontal/genética , Mutación , Nicotina/farmacología , Receptores Nicotínicos/genética , Células Cultivadas , Transferencia Resonante de Energía de Fluorescencia , Humanos , Fotoblanqueo , Subunidades de Proteína , Receptores Nicotínicos/química
15.
J Neurosci ; 27(38): 10128-42, 2007 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-17881519

RESUMEN

We generated a mouse line harboring an autosomal-dominant nocturnal frontal lobe epilepsy (ADNFLE) mutation: the alpha4 nicotinic receptor S248F knock-in strain. In this mouse, modest nicotine doses (1-2 mg/kg) elicit a novel behavior termed the dystonic arousal complex (DAC). The DAC includes stereotypical head movements, body jerking, and forelimb dystonia; these behaviors resemble some core features of ADNFLE. A marked Straub tail is an additional component of the DAC. Similar to attacks in ADNFLE, the DAC can be partially suppressed by the sodium channel blocker carbamazepine or by pre-exposure to a very low dose of nicotine (0.1 mg/kg). The DAC is centrally mediated, genetically highly penetrant, and, surprisingly, not associated with overt ictal electrical activity as assessed by (1) epidural or frontal lobe depth-electrode electroencephalography or (2) hippocampal c-fos-regulated gene expression. Heterozygous knock-in mice are partially protected from nicotine-induced seizures. The noncompetitive antagonist mecamylamine does not suppress the DAC, although it suppresses high-dose nicotine-induced wild-type-like seizures. Experiments on agonist-induced 86Rb+ and neurotransmitter efflux from synaptosomes and on alpha4S248Fbeta2 receptors expressed in oocytes confirm that the S248F mutation confers resistance to mecamylamine blockade. Genetic background, gender, and mutant gene expression levels modulate expression of the DAC phenotype in mice. The S248F mouse thus appears to provide a model for the paroxysmal dystonic element of ADNFLE semiology. Our model complements what is seen in other ADNFLE animal models. Together, these mice cover the spectrum of behavioral and electrographic events seen in the human condition.


Asunto(s)
Nivel de Alerta/genética , Modelos Animales de Enfermedad , Trastornos Distónicos/genética , Epilepsia del Lóbulo Frontal/genética , Mutación , Nicotina/toxicidad , Animales , Nivel de Alerta/efectos de los fármacos , Trastornos Distónicos/inducido químicamente , Epilepsia del Lóbulo Frontal/inducido químicamente , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes Neurológicos , Ratones Transgénicos , Ratas , Especificidad de la Especie , Xenopus
16.
J Neurosci ; 25(49): 11396-411, 2005 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-16339034

RESUMEN

A leucine to alanine substitution (L9'A) was introduced in the M2 region of the mouse alpha4 neuronal nicotinic acetylcholine receptor (nAChR) subunit. Expressed in Xenopus oocytes, alpha4(L9'A)beta2 nAChRs were > or =30-fold more sensitive than wild type (WT) to both ACh and nicotine. We generated knock-in mice with the L9'A mutation and studied their cellular responses, seizure phenotype, and sleep-wake cycle. Seizure studies on alpha4-mutated animals are relevant to epilepsy research because all known mutations linked to autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) occur in the M2 region of alpha4or beta2 subunits. Thalamic cultures and synaptosomes from L9'A mice were hypersensitive to nicotine-induced ion flux. L9'A mice were approximately 15-fold more sensitive to seizures elicited by nicotine injection than their WT littermates. Seizures in L9'A mice differed qualitatively from those in WT: L9'A seizures started earlier, were prevented by nicotine pretreatment, lacked EEG spike-wave discharges, and consisted of fast repetitive movements. Nicotine-induced seizures in L9'A mice were partial, whereas WT seizures were generalized. When L9'A homozygous mice received a 10 mg/kg nicotine injection, there was temporal and phenomenological separation of mutant and WT-like seizures: an initial seizure approximately 20 s after injection was clonic and showed no EEG changes. A second seizure began 3-4 min after injection, was tonic-clonic, and had EEG spike-wave activity. No spontaneous seizures were detected in L9'A mice during chronic video/EEG recordings, but their sleep-wake cycle was altered. Our findings show that hypersensitive alpha4* nicotinic receptors in mice mediate changes in the sleep-wake cycle and nicotine-induced seizures resembling ADNFLE.


Asunto(s)
Fenotipo , Subunidades de Proteína/genética , Receptores Nicotínicos/biosíntesis , Receptores Nicotínicos/genética , Convulsiones/genética , Trastornos del Sueño-Vigilia/genética , Animales , Relación Dosis-Respuesta a Droga , Femenino , Ratones , Ratones Transgénicos , Mutación , Agonistas Nicotínicos/farmacología , Agonistas Nicotínicos/toxicidad , Subunidades de Proteína/biosíntesis , Convulsiones/inducido químicamente , Convulsiones/metabolismo , Trastornos del Sueño-Vigilia/metabolismo , Xenopus
17.
Mol Pharmacol ; 68(2): 487-501, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15901849

RESUMEN

Extracellular Ca(2+) robustly potentiates the acetylcholine response of alpha4beta2 nicotinic receptors. Rat orthologs of five mutations linked to autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE)-alpha4(S252F), alpha4(S256L), alpha4(+L264), beta2(V262L), and beta2(V262M)-reduced 2 mM Ca(2+) potentiation of the alpha4beta2 1 mM acetylcholine response by 55 to 74%. To determine whether altered allosteric Ca(2+) activation or enhanced Ca(2+) block caused this reduction, we coexpressed the rat ADNFLE mutations with an alpha4 N-terminal mutation, alpha4(E180Q), that abolished alpha4beta2 allosteric Ca(2+) activation. In each case, Ca(2+) inhibition of the double mutants was less than that expected from a Ca(2+) blocking mechanism. In fact, the effects of Ca(2+) on the ADNFLE mutations near the intracellular end of the M2 region-alpha4(S252F) and alpha4(S256L)-were consistent with a straightforward allosteric mechanism. In contrast, the effects of Ca(2+) on the ADNFLE mutations near the extracellular end of the M2 region-alpha4(+L264)beta2, beta2(V262L), and beta2(V262M)-were consistent with a mixed mechanism involving both altered allosteric activation and enhanced block. However, the effects of 2 mM Ca(2+) on the alpha4beta2, alpha4(+L264)beta2, and alpha4beta2(V262L) single-channel conductances, the effects of membrane potential on the beta2(V262L)-mediated reduction in Ca(2+) potentiation, and the effects of eliminating the negative charges in the extracellular ring on this reduction failed to provide any direct evidence of mutant-enhanced Ca(2+) block. Moreover, analyses of the alpha4beta2, alpha4(S256L), and alpha4(+L264) Ca(2+) concentration-potentiation relations suggested that the ADNFLE mutations reduce Ca(2+) potentiation of the alpha4beta2 acetylcholine response by altering allosteric activation rather than by enhancing block.


Asunto(s)
Calcio/farmacología , Epilepsia del Lóbulo Frontal/genética , Mutación , Receptores Nicotínicos/genética , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/fisiología , Secuencia de Aminoácidos , Animales , Relación Dosis-Respuesta a Droga , Epilepsia del Lóbulo Frontal/metabolismo , Femenino , Datos de Secuencia Molecular , Ratas , Receptores Nicotínicos/metabolismo , Xenopus laevis
18.
J Exp Biol ; 206(Pt 13): 2241-55, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12771173

RESUMEN

Glutamate elicits a variety of effects in insects, including inhibitory and excitatory signals at both neuromuscular junctions and brain. Insect glutamatergic neurotransmission has been studied in great depth especially from the standpoint of the receptor-mediated effects, but the molecular mechanisms involved in the termination of the numerous glutamatergic signals have only recently begun to receive attention. In vertebrates, glutamatergic signals are terminated by Na(+)/K(+)-dependent high-affinity excitatory amino acid transporters (EAAT), which have been cloned and characterized extensively. Cloning and characterization of a few insect homologues have followed, but functional information for these homologues is still limited. Here we report a study conducted on a cloned mosquito EAAT homologue isolated from the vector of the dengue virus, Aedes aegypti. The deduced amino acid sequence of the protein, AeaEAAT, exhibits 40-50% identity with mammalian EAATs, and 45-50% identity to other insect EAATs characterized thus far. It transports L-glutamate as well as L- and D-aspartate with high affinity in the micromolar range, and demonstrates a substrate-elicited anion conductance when heterologously expressed in Xenopus laevis oocytes, as found with mammalian homologues. Analysis of the spatial distribution of the protein demonstrates high expression levels in the adult thorax, which is mostly observed in the thoracic ganglia. Together, the work presented here provides a thorough examination of the role played by glutamate transport in Ae. aegypti.


Asunto(s)
Aedes/genética , Aedes/metabolismo , Sistema de Transporte de Aminoácidos X-AG/genética , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Perfilación de la Expresión Génica , Secuencia de Aminoácidos , Animales , Análisis por Conglomerados , Electrofisiología , Ganglios de Invertebrados/metabolismo , Inmunohistoquímica , Cinética , Datos de Secuencia Molecular , Filogenia
19.
J Physiol ; 550(Pt 1): 11-26, 2003 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-12754307

RESUMEN

Five nicotinic acetylcholine receptor (nAChR) mutations are currently linked to autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE). The similarity of their clinical symptoms suggests that a common functional anomaly of the mutations underlies ADNFLE seizures. To identify this anomaly, we constructed rat orthologues (S252F, +L264, S256L, V262L, V262M) of the human ADNFLE mutations, expressed them in Xenopus oocytes with the appropriate wild-type (WT) subunit (alpha4 or beta2), and studied the Ca2+ dependence of their ACh responses. All the mutations significantly reduced 2 mM Ca2+-induced increases in the 30 microM ACh response (P < 0.05). Consistent with a dominant mode of inheritance, this reduction persisted in oocytes injected with a 1:1 mixture of mutant and WT cRNA. BAPTA injections showed that the reduction was not due to a decrease in the secondary activation of Ca2+-activated Cl- currents. The S256L mutation also abolished 2 mM Ba2+ potentiation of the ACh response. The S256L, V262L and V262M mutations had complex effects on the ACh concentration-response relationship but all three mutations shifted the concentration-response relationship to the left at [ACh] >= 30 microM. Co-expression of the V262M mutation with a mutation (E180Q) that abolished Ca2+ potentiation resulted in 2 mM Ca2+ block, rather than potentiation, of the 30 microM ACh response, suggesting that the ADNFLE mutations reduce Ca2+ potentiation by enhancing Ca2+ block of the alpha4beta2 nAChR. Ca2+ modulation may prevent presynaptic alpha4beta2 nAChRs from overstimulating glutamate release at central excitatory synapses during bouts of synchronous, repetitive activity. Reducing the Ca2+ dependence of the ACh response could trigger seizures by increasing alpha4beta2-mediated glutamate release during such bouts.


Asunto(s)
Calcio/fisiología , Ritmo Circadiano/genética , Epilepsia del Lóbulo Frontal/genética , Genes Dominantes , Mutación , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Acetilcolina/farmacología , Secuencia de Aminoácidos/genética , Animales , Artefactos , Bario/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/metabolismo , Calcio/farmacología , Membrana Celular/metabolismo , Canales de Cloruro/fisiología , Conductividad Eléctrica , Homeostasis , Datos de Secuencia Molecular , Mutación/genética , Mutación/fisiología , Agonistas Nicotínicos/metabolismo , Oocitos , Piridinas/metabolismo , Ratas , Tiempo de Reacción , Receptores Nicotínicos/efectos de los fármacos , Xenopus laevis
20.
J Neurochem ; 84(4): 753-66, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12562520

RESUMEN

To determine whether prolonged nicotine exposure persistently inactivates rat alpha4beta2 nicotinic receptors expressed in Xenopus oocytes, we measured the voltage-clamped alpha4beta2 response to acetylcholine (ACh) before and 24 h after, 1-h or 12-h incubations in 10 microm nicotine. A 12-h incubation in 10 microm nicotine depressed the alpha4beta2 ACh response for 24 h without affecting total or surface alpha4beta2 expression. To determine whether oocyte-mediated nicotine release caused this depression, we co-incubated an alpha4beta2-expressing oocyte with an un-injected one (pre-incubated in 10 microm nicotine for 12 h) for 24 h and measured the change in the alpha4beta2 ACh response. The response decreased by the same factor after the co-incubation as it did after a 12-h incubation in 10 microm nicotine and a 24-h incubation in nicotine-free media. Thus, oocyte-mediated nicotine release caused the persistent desensitization we observed after a 12-h incubation in 10 microm nicotine. Consistent with this result, measurements of [3H]nicotine release show that oocytes release enough nicotine into the wash media to desensitize alpha4beta2 receptors and that prolonged incubation in 300 microm ACh (which cannot readily cross the membrane or accumulate in acidic vesicles) did not persistently depress the alpha4beta2 response.


Asunto(s)
Nicotina/farmacología , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Receptores Nicotínicos/efectos de los fármacos , Acetilcolina/farmacología , Animales , Membrana Celular/metabolismo , Expresión Génica/efectos de los fármacos , Microinyecciones , Nicotina/metabolismo , Nicotina/farmacocinética , Técnicas de Placa-Clamp , Perfusión , Ratas , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Factores de Tiempo , Tritio , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...