Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 300(3): 105676, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38278326

RESUMEN

Infectious diseases are one of the world's leading causes of morbidity. Their rapid spread emphasizes the need for accurate and fast diagnostic methods for large-scale screening. Here, we describe a robust method for the detection of pathogens based on microscale thermophoresis (MST). The method involves the hybridization of a fluorescently labeled DNA probe to a target RNA and the assessment of thermophoretic migration of the resulting complex in solution within a 2 to 30-time window. We found that the thermophoretic migration of the nucleic acid-based probes is primarily determined by the fluorescent molecule used, rather than the nucleic acid sequence of the probe. Furthermore, a panel of uniformly labeled probes that bind to the same target RNA yields a more responsive detection pattern than a single probe, and moreover, can be used for the detection of specific pathogen variants. In addition, intercalating agents (ICA) can be used to alter migration directionality to improve detection sensitivity and resolving power by several orders of magnitude. We show that this approach can rapidly diagnose viral SARS-CoV2, influenza H1N1, artificial pathogen targets, and bacterial infections. Furthermore, it can be used for anti-microbial resistance testing within 2 h, demonstrating its diagnostic potential for early pathogen detection.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Técnicas Microbiológicas , Técnicas de Diagnóstico Molecular , Hibridación de Ácido Nucleico , ARN , Sondas de ADN , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/normas , Técnicas Microbiológicas/métodos , Técnicas Microbiológicas/normas , Ensayos Analíticos de Alto Rendimiento/métodos , Ensayos Analíticos de Alto Rendimiento/normas , ARN/análisis , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Virosis/diagnóstico , Infecciones Bacterianas/diagnóstico , Línea Celular Tumoral , Humanos
2.
Front Neurosci ; 16: 897005, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35928013

RESUMEN

The modern lifestyle requires less physical activity and skills during our daily routine, leading to multiple pathologies related to physical disabilities and energy accessibility. Thus, exploring the mechanisms underlying the metabolic regulation of exercise is crucial. Here, we characterized the effect of forced and voluntary endurance exercises on three key metabolic signaling pathways, sirtuins, AMPK, and mTOR, across several metabolic tissues in mice: brain, muscles, and liver. Both voluntary and forced exercises induced AMPK with higher intensity in the first. The comparison between those metabolic tissues revealed that the hypothalamus and the hippocampus, two brain parts, showed different metabolic signaling activities. Strikingly, despite the major differences in the physiology of muscles and hypothalamic tissues, the hypothalamus replicates the metabolic response of the muscle in response to physical exercise. Specifically, muscles and hypothalamic tissues showed an increase and a decrease in AMPK and mTOR signaling, respectively. Overall, this study reveals new insight into the relation between the hypothalamus and muscles, which enhances the coordination within the muscle-brain axis and potentially improves the systemic response to physical activity performance and delaying health inactivity disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA