Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Blood Adv ; 8(3): 653-666, 2024 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-38113468

RESUMEN

ABSTRACT: Lymphodepletion (LD) is an integral component of chimeric antigen receptor T-cell (CART) immunotherapies. In this study, we compared the safety and efficacy of bendamustine (Benda) to standard fludarabine/cyclophosphamide (Flu/Cy) LD before CD19-directed, CD28-costimulated CART axicabtagene ciloleucel (axi-cel) for patients with large B-cell lymphoma (LBCL) and follicular lymphoma (FL). We analyzed 59 patients diagnosed with LBCL (n = 48) and FL (n = 11) consecutively treated with axi-cel at the University of Pennsylvania. We also analyzed serum samples for cytokine levels and metabolomic changes before and after LD. Flu/Cy and Benda demonstrated similar efficacy, with complete remission rates of 51.4% and 50.0% (P = .981), respectively, and similar progression-free and overall survivals. Any-grade cytokine-release syndrome occurred in 91.9% of patients receiving Flu/Cy vs 72.7% of patients receiving Benda (P = .048); any-grade neurotoxicity after Flu/Cy occurred in 45.9% of patients and after Benda in 18.2% of patients (P = .031). In addition, Flu/Cy was associated with a higher incidence of grade ≥3 neutropenia (100% vs 54.5%; P < .001), infections (78.4% vs 27.3%; P < .001), and neutropenic fever (78.4% vs 13.6%; P < .001). These results were confirmed both in patients with LBCL and those with FL. Mechanistically, patients with Flu/Cy had a greater increase in inflammatory cytokines associated with neurotoxicity and reduced levels of metabolites critical for redox balance and biosynthesis. This study suggests that Benda LD may be a safe alternative to Flu/Cy for CD28-based CART CD19-directed immunotherapy with similar efficacy and reduced toxicities. Benda is associated with reduced levels of inflammatory cytokines and increased anabolic metabolites.


Asunto(s)
Productos Biológicos , Citocinas , Linfoma Folicular , Humanos , Clorhidrato de Bendamustina/efectos adversos , Antígenos CD28 , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Ciclofosfamida
2.
Nat Cancer ; 4(5): 629-647, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37217651

RESUMEN

Immunotherapy revolutionized treatment options in cancer, yet the mechanisms underlying resistance in many patients remain poorly understood. Cellular proteasomes have been implicated in modulating antitumor immunity by regulating antigen processing, antigen presentation, inflammatory signaling and immune cell activation. However, whether and how proteasome complex heterogeneity may affect tumor progression and the response to immunotherapy has not been systematically examined. Here, we show that proteasome complex composition varies substantially across cancers and impacts tumor-immune interactions and the tumor microenvironment. Through profiling of the degradation landscape of patient-derived non-small-cell lung carcinoma samples, we find that the proteasome regulator PSME4 is upregulated in tumors, alters proteasome activity, attenuates presented antigenic diversity and associates with lack of response to immunotherapy. Collectively, our approach affords a paradigm by which proteasome composition heterogeneity and function should be examined across cancer types and targeted in the context of precision oncology.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Presentación de Antígeno , Neoplasias Pulmonares/patología , Medicina de Precisión , Complejo de la Endopetidasa Proteasomal/metabolismo , Microambiente Tumoral
3.
Front Immunol ; 13: 880959, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36505421

RESUMEN

Response to immunotherapy across multiple cancer types is approximately 25%, with some tumor types showing increased response rates compared to others (i.e. response rates in melanoma and non-small cell lung cancer (NSCLC) are typically 30-60%). Patients whose tumors are resistant to immunotherapy often lack high levels of pre-existing inflammation in the tumor microenvironment. Increased tumor glycolysis, acting through glucose deprivation and lactic acid accumulation, has been shown to have pleiotropic immune suppressive effects using in-vitro and in-vivo models of disease. To determine whether the immune suppressive effect of tumor glycolysis is observed across human solid tumors, we analyzed glycolytic and immune gene expression patterns in multiple solid malignancies. We found that increased expression of a glycolytic signature was associated with decreased immune infiltration and a more aggressive disease across multiple tumor types. Radiologic and pathologic analysis of untreated estrogen receptor (ER)-negative breast cancers corroborated these observations, and demonstrated that protein expression of glycolytic enzymes correlates positively with glucose uptake and negatively with infiltration of CD3+ and CD8+ lymphocytes. This study reveals an inverse relationship between tumor glycolysis and immune infiltration in a large cohort of multiple solid tumor types.


Asunto(s)
Neoplasias de la Mama , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Femenino , Inmunoterapia , Glucólisis , Microambiente Tumoral
4.
Cancers (Basel) ; 14(9)2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35565432

RESUMEN

Three murine glioma cell lines (GL261, CT2A, and ALTS1C1) were modified to downregulate the expression of the murine LDH-A gene using shRNA, and compared to shRNA scrambled control (NC) cell lines. Differences in the expression of LDH-A and LDH-B mRNA, protein and enzymatic activity, as well as their LDH isoenzyme profiles, were observed in the six cell lines, and confirmed successful LDH-A KD. LDH-A KD (knock-down) resulted in metabolic changes in cells with a reduction in glycolysis (GlycoPER) and an increase in basal respiratory rate (mitoOCR). GL261 cells had a more limited ATP production capacity compared to CT2A and ALTS1C1 cells. An analysis of mRNA expression data indicated that: (i) GL261 LDH-A KD cells may have an improved ability to metabolize lactate into the TCA cycle; and (ii) that GL261 LDH-A KD cells can upregulate lipid metabolism/fatty acid oxidation pathways, whereas the other glioma cell lines do not have this capacity. These two observations suggest that GL261 LDH-A KD cells can develop/activate alternative metabolic pathways for enhanced survival in a nutrient-limited environment, and that specific nutrient limitations have a variable impact on tumor cell metabolism and proliferation. The phenotypic effects of LDH-A KD were compared to those in control (NC) cells and tumors. LDH-A KD prolonged the doubling time of GL261 cells in culture and prevented the formation of subcutaneous flank tumors in immune-competent C57BL/6 mice, whereas GL261 NC tumors had a prolonged growth delay in C57BL/6 mice. In nude mice, both LDH-A KD and NC GL261 tumors grew rapidly (more rapidly than GL261 NC tumors in C57BL/6 mice), demonstrating the impact of an intact immune system on GL261 tumor growth. No differences between NC and KD cell proliferation (in vitro) or tumor growth in C57BL/6 mice (doubling time) were observed for CT2A and ALTS1C1 cells and tumors, despite the small changes to their LDH isoenzyme profiles. These results suggest that GL261 glioma cells (but not CT2A and ALTS1C1 cells) are pre-programmed to have the capacity for activating different metabolic pathways with higher TCA cycle activity, and that this capacity is enhanced by LDH-A depletion. We observed that the combined impact of LDH-A depletion and the immune system had a significant impact on the growth of subcutaneous-located GL261 tumors.

5.
Cancers (Basel) ; 14(9)2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35565435

RESUMEN

The effects of the LDH-A depletion via shRNA knockdown on three murine glioma cell lines and corresponding intracranial (i.c.) tumors were studied and compared to pharmacologic (GNE-R-140) inhibition of the LDH enzyme complex, and to shRNA scrambled control (NC) cell lines. The effects of genetic-shRNA LDH-A knockdown and LDH drug-targeted inhibition (GNE-R-140) on tumor-cell metabolism, tumor growth, and animal survival were similar. LDH-A KD and GNE-R-140 unexpectedly increased the aggressiveness of GL261 intracranial gliomas, but not CT2A and ALTS1C1 i.c. gliomas. Furthermore, the bioenergetic profiles (ECAR and OCR) of GL261 NC and LDH-A KD cells under different nutrient limitations showed that (a) exogenous pyruvate is not a major carbon source for metabolism through the TCA cycle of native GL261 cells; and (b) the unique upregulation of LDH-B that occurs in GL261 LDH-A KD cells results in these cells being better able to: (i) metabolize lactate as a primary carbon source through the TCA cycle, (ii) be a net consumer of lactate, and (iii) showed a significant increase in the proliferation rate following the addition of 10 mM lactate to the glucose-free media (only seen in GL261 KD cells). Our study suggests that inhibition of LDH-A/glycolysis may not be a general strategy to inhibit the i.c. growth of all gliomas, since the level of LDH-A expression and its interplay with LDH-B can lead to complex metabolic interactions between tumor cells and their environment. Metabolic-inhibition treatment strategies need to be carefully assessed, since the inhibition of glycolysis (e.g., inhibition of LDH-A) may lead to the unexpected development and activation of alternative metabolic pathways (e.g., upregulation of lipid metabolism and fatty-acid oxidation pathways), resulting in enhanced tumor-cell survival in a nutrient-limited environment and leading to increased tumor aggressiveness.

6.
Nature ; 591(7851): 652-658, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33588426

RESUMEN

Limiting metabolic competition in the tumour microenvironment may increase the effectiveness of immunotherapy. Owing to its crucial role in the glucose metabolism of activated T cells, CD28 signalling has been proposed as a metabolic biosensor of T cells1. By contrast, the engagement of CTLA-4 has been shown to downregulate T cell glycolysis1. Here we investigate the effect of CTLA-4 blockade on the metabolic fitness of intra-tumour T cells in relation to the glycolytic capacity of tumour cells. We found that CTLA-4 blockade promotes metabolic fitness and the infiltration of immune cells, especially in glycolysis-low tumours. Accordingly, treatment with anti-CTLA-4 antibodies improved the therapeutic outcomes of mice bearing glycolysis-defective tumours. Notably, tumour-specific CD8+ T cell responses correlated with phenotypic and functional destabilization of tumour-infiltrating regulatory T (Treg) cells towards IFNγ- and TNF-producing cells in glycolysis-defective tumours. By mimicking the highly and poorly glycolytic tumour microenvironments in vitro, we show that the effect of CTLA-4 blockade on the destabilization of Treg cells is dependent on Treg cell glycolysis and CD28 signalling. These findings indicate that decreasing tumour competition for glucose may facilitate the therapeutic activity of CTLA-4 blockade, thus supporting its combination with inhibitors of tumour glycolysis. Moreover, these results reveal a mechanism by which anti-CTLA-4 treatment interferes with Treg cell function in the presence of glucose.


Asunto(s)
Antígeno CTLA-4/antagonistas & inhibidores , Glucólisis , Neoplasias/inmunología , Neoplasias/metabolismo , Linfocitos T Reguladores/inmunología , Animales , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Melanoma/genética , Melanoma/inmunología , Melanoma/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
7.
Mol Ther Oncolytics ; 18: 382-395, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32913888

RESUMEN

To enhance human prostate-specific membrane antigen (hPSMA)-specific chimeric antigen receptor (CAR) T cell therapy in a hPSMA+ MyC-CaP tumor model, we studied and imaged the effect of lactate dehydrogenase A (LDH-A) depletion on the tumor microenvironment (TME) and tumor progression. Effective LDH-A short hairpin RNA (shRNA) knockdown (KD) was achieved in MyC-CaP:hPSMA+ Renilla luciferase (RLuc)-internal ribosome entry site (IRES)-GFP tumor cells, and changes in tumor cell metabolism and in the TME were monitored. LDH-A downregulation significantly inhibited cell proliferation and subcutaneous tumor growth compared to control cells and tumors. However, total tumor lactate concentration did not differ significantly between LDH-A knockdown and control tumors, reflecting the lower vascularity, blood flow, and clearance of lactate from LDH-A knockdown tumors. Comparing treatment responses of MyC-CaP tumors with LDH-A depletion and/or anti-hPSMA CAR T cells showed that the dominant effect on tumor growth was LDH-A depletion. With anti-hPSMA CAR T cell treatment, tumor growth was significantly slower when combined with tumor LDH-A depletion and compared to control tumor growth (p < 0.0001). The lack of a complete tumor response in our animal model can be explained in part by (1) the lower activity of human CAR T cells against hPSMA-expressing murine tumors in a murine host, and (2) a loss of hPSMA antigen from the tumor cell surface in progressive generations of tumor cells.

8.
Nat Biomed Eng ; 4(7): 686-703, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32661307

RESUMEN

Theranostic agents should ideally be renally cleared and biodegradable. Here, we report the synthesis, characterization and theranostic applications of fluorescent ultrasmall gold quantum clusters that are stabilized by the milk metalloprotein alpha-lactalbumin. We synthesized three types of these nanoprobes that together display fluorescence across the visible and near-infrared spectra when excited at a single wavelength through optical colour coding. In live tumour-bearing mice, the near-infrared nanoprobe generates contrast for fluorescence, X-ray computed tomography and magnetic resonance imaging, and exhibits long circulation times, low accumulation in the reticuloendothelial system, sustained tumour retention, insignificant toxicity and renal clearance. An intravenously administrated near-infrared nanoprobe with a large Stokes shift facilitated the detection and image-guided resection of breast tumours in vivo using a smartphone with modified optics. Moreover, the partially unfolded structure of alpha-lactalbumin in the nanoprobe helps with the formation of an anti-cancer lipoprotein complex with oleic acid that triggers the inhibition of the MAPK and PI3K-AKT pathways, immunogenic cell death and the recruitment of infiltrating macrophages. The biodegradability and safety profile of the nanoprobes make them suitable for the systemic detection and localized treatment of cancer.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Oro/química , Oro/farmacología , Lactalbúmina/química , Lactalbúmina/farmacología , Animales , Apoptosis , Neoplasias de la Mama/patología , Muerte Celular , Femenino , Xenoinjertos , Lipoproteínas , Imagen por Resonancia Magnética/métodos , Ratones , Ratones Endogámicos BALB C , Quinasas de Proteína Quinasa Activadas por Mitógenos/efectos de los fármacos , Nanotecnología/métodos , Imagen Óptica , Fosfatidilinositol 3-Quinasas/efectos de los fármacos , Proteómica , Nanomedicina Teranóstica/métodos
9.
PLoS One ; 13(9): e0203965, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30248111

RESUMEN

Previous studies show that LDH-A knockdown reduces orthotopic 4T1 breast tumor lactate and delays tumor growth and the development of metastases in nude mice. Here, we report significant changes in the tumor microenvironment (TME) and a more robust anti-tumor response in immune competent BALB/c mice. 4T1 murine breast cancer cells were transfected with shRNA plasmids directed against LDH-A (KD) or a scrambled control plasmid (NC). Cells were also transduced with dual luciferase-based reporter systems to monitor HIF-1 activity and the development of metastases by bioluminescence imaging, using HRE-sensitive and constitutive promoters, respectively. The growth and metastatic profile of orthotopic 4T1 tumors developed from these cell lines were compared and a primary tumor resection model was studied to simulate the clinical management of breast cancer. Primary tumor growth, metastasis formation and TME phenotype were significantly different in LDH-A KD tumors compared with controls. In LDH-A KD cells, HIF-1 activity, hexokinase 1 and 2 expression and VEGF secretion were reduced. Differences in the TME included lower HIF-1α expression that correlated with lower vascularity and pimonidazole staining, higher infiltration of CD3+ and CD4+ T cells and less infiltration of TAMs. These changes resulted in a greater delay in metastases formation and 40% long-term survivors (>20 weeks) in the LDH-A KD cohort following surgical resection of the primary tumor. We show for the first time that LDH-depletion inhibits the formation of metastases and prolongs survival of mice through changes in tumor microenvironment that modulate the immune response. We attribute these effects to diminished HIF-1 activity, vascularization, necrosis formation and immune suppression in immune competent animals. Gene-expression analyses from four human breast cancer datasets are consistent with these results, and further demonstrate the link between glycolysis and immune suppression in breast cancer.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Neoplasias Mamarias Experimentales/inmunología , Neoplasias Mamarias Experimentales/metabolismo , Microambiente Tumoral/inmunología , Microambiente Tumoral/fisiología , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/genética , Isoenzimas/metabolismo , L-Lactato Deshidrogenasa/antagonistas & inhibidores , L-Lactato Deshidrogenasa/genética , Lactato Deshidrogenasa 5 , Ácido Láctico/metabolismo , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Metástasis de la Neoplasia/inmunología , Metástasis de la Neoplasia/patología , Neovascularización Patológica , Transducción de Señal
10.
Breast Cancer (Auckl) ; 11: 1178223417731565, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28979132

RESUMEN

Immunotherapy is revolutionizing cancer care across disciplines. The original success of immune checkpoint blockade in melanoma has already been translated to Food and Drug Administration-approved therapies in a number of other cancers, and a large number of clinical trials are underway in many other disease types, including breast cancer. Here, we review the basic requirements for a successful antitumor immune response, with a focus on the metabolic and physical barriers encountered by lymphocytes entering breast tumors. We also review recent clinical trials of immunotherapy in breast cancer and provide a number of interesting questions that will need to be answered for successful breast cancer immunotherapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...