Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 771, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39134964

RESUMEN

BACKGROUND: In Angiosperms, the continuation of plant species is intricately dependent on the funiculus multifaceted role in nutrient transport, mechanical support, and dehiscence of seeds. SEEDSTICK (STK) is a MADS-box transcription factor involved in seed size and abscission, and one of the few genes identified as affecting funiculus growth. Given the importance of the funiculus to a correct seed development, allied with previous phenotypic observations of stk mutants, we performed a transcriptomic analysis of stk funiculi from floral stage 17, using RNA-sequencing, to infer on the deregulated networks of genes. RESULTS: The generated dataset of differentially expressed genes was enriched with cell wall biogenesis, cell cycle, sugar metabolism and transport terms, all in accordance with stk phenotype observed in funiculi from floral stage 17. We selected eight differentially expressed genes for transcriptome validation using qPCR and/or promoter reporter lines. Those genes were involved with abscission, seed development or novel functions in stk funiculus, such as hormones/secondary metabolites transport. CONCLUSION: Overall, the analysis performed in this study allowed delving into the STK-network established in Arabidopsis funiculus, fulfilling a literature gap. Simultaneously, our findings reinforced the reliability of the transcriptome, making it a valuable resource for candidate genes selection for functional genetic studies in the funiculus. This will enhance our understanding on the regulatory network controlled by STK, on the role of the funiculus and how seed development may be affected by them.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Dominio MADS , Semillas , Transcriptoma , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica , Fertilización/genética
2.
Plant Sci ; 348: 112231, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39154893

RESUMEN

In angiosperms, ovules give rise to seeds upon fertilization. Thus, seed formation is dependent on both successful ovule development and tightly controlled communication between female and male gametophytes. During establishment of these interactions, cell walls play a pivotal role, especially arabinogalactan-proteins (AGPs). AGPs are highly glycosylated proteins decorated by arabinogalactan side chains, representing 90 % of the AGP molecule. AGP glycosylation is initiated by a reaction catalysed by hydroxyproline-O-galactosyltransferases (Hyp-GALTs), specifically eight of them (GALT2-9), which add the first galactose to Hyp residues. Five Hyp-GALTs (GALT2, 5, 7, 8 and 9) were previously described as essential for AGP functions in pollen and ovule development, pollen-pistil interactions, and seed morphology. In the present work, a higher order Hyp-GALT mutant (23456789) was studied, with a high degree of under-glycosylated AGPs, to gain deeper insight into the crucial roles of these eight enzymes in female reproductive tissues. Notably, the 23456789 mutant demonstrated a high quantity of unfertilized ovules, displaying abnormal callose accumulation both at the micropylar region and, sometimes, throughout the entire embryo sac. Additionally, this mutant displayed ovules with abnormal embryo sacs, had a disrupted spatiotemporal distribution of AGPs in female reproductive tissues, and showed abnormal seed and embryo development, concomitant with a reduction in AGP-GlcA levels. This study revealed that at least three more enzymes exhibit Hyp-O-GALT activity in Arabidopsis (GALT3, 4 and 6), and reinforces the crucial importance of AGP carbohydrates in carrying out the biological functions of AGPs during plant reproduction.


Asunto(s)
Arabidopsis , Galactosiltransferasas , Óvulo Vegetal , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/enzimología , Galactosiltransferasas/metabolismo , Galactosiltransferasas/genética , Óvulo Vegetal/crecimiento & desarrollo , Óvulo Vegetal/genética , Semillas/crecimiento & desarrollo , Semillas/genética , Semillas/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Reproducción , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Mucoproteínas/metabolismo , Mucoproteínas/genética
3.
Nat Commun ; 15(1): 5875, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997266

RESUMEN

Correct regulation of intercellular communication is a fundamental requirement for cell differentiation. In Arabidopsis thaliana, the female germline differentiates from a single somatic ovule cell that becomes encased in ß-1,3-glucan, a water insoluble polysaccharide implicated in limiting pathogen invasion, regulating intercellular trafficking in roots, and promoting pollen development. Whether ß-1,3-glucan facilitates germline isolation and development has remained contentious, since limited evidence is available to support a functional role. Here, transcriptional profiling of adjoining germline and somatic cells revealed differences in gene expression related to ß-1,3-glucan metabolism and signalling through intercellular channels (plasmodesmata). Dominant expression of a ß-1,3-glucanase in the female germline transiently perturbed ß-1,3-glucan deposits, allowed intercellular movement of tracer molecules, and led to changes in germline gene expression and histone marks, eventually leading to termination of germline development. Our findings indicate that germline ß-1,3-glucan fulfils a functional role in the ovule by insulating the primary germline cell, and thereby determines the success of downstream female gametogenesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Gametogénesis en la Planta , Regulación de la Expresión Génica de las Plantas , Óvulo Vegetal , beta-Glucanos , Arabidopsis/metabolismo , Arabidopsis/genética , Óvulo Vegetal/metabolismo , Óvulo Vegetal/genética , beta-Glucanos/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Gametogénesis en la Planta/genética , Plasmodesmos/metabolismo , Polen/metabolismo , Polen/genética , Polen/crecimiento & desarrollo , Perfilación de la Expresión Génica
4.
Plant Physiol Biochem ; 210: 108631, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38657550

RESUMEN

Glutamine synthetase (GS), an initial enzyme in nitrogen (N) plant metabolism, exists as a group of isoenzymes found in both cytosolic (GS1) and plastids (GS2) and has gathered significant attention for enhancing N use efficiency and crop yield. This work focuses on the A. thaliana GLN1;3 and GLN1;5 genes, the two predicted most expressed genes in seeds, among the five isogenes encoding GS1 in this species. The expression patterns were studied using transgenic marker line plants and qPCR during seed development and germination. The observed patterns highlight distinct functions for the two genes and confirm GLN1;5 as the most highly expressed GS1 gene in seeds. The GLN1;5, expression, oriented towards hypocotyl and cotyledons, suggests a role in protein turnover during germination, while the radicle-oriented expression of GLN1;3 supports a function in early external N uptake. While the single mutants exhibited a normal phenotype, except for a decrease in seed parameters, the double gln1;3/gln1;5 mutant displayed a germination delay, substantial impairment in growth, nitrogen metabolism, and number and quality of the seeds, as well as a diminishing in flowering. Although seed and pollen-specific, GLN1;5 expression is upregulated in the meristems of the gln1;3 mutants, filling the lack of GLN1;3 and ensuring the normal functioning of the gln1;3 mutants. These findings validate earlier in silico data on the expression patterns of GLN1;3 and GL1;5 genes in seeds, explore their different functions, and underscore their essential role in plant growth, seed production, germination, and early stages of plant development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Germinación , Glutamato-Amoníaco Ligasa , Semillas , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/enzimología , Semillas/crecimiento & desarrollo , Semillas/genética , Semillas/enzimología , Germinación/genética , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citosol/enzimología , Citosol/metabolismo , Nitrógeno/metabolismo , Plantas Modificadas Genéticamente , Isoenzimas/genética , Isoenzimas/metabolismo
5.
Plant Reprod ; 37(3): 341-353, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38294499

RESUMEN

KEY MESSAGE: GPI anchor addition is important for JAGGER localization and in vivo function. Loss of correct GPI anchor addition in JAGGER, negatively affects its localization and function. In flowering plants, successful double fertilization requires the correct delivery of two sperm cells to the female gametophyte inside the ovule. The delivery of a single pair of sperm cells is achieved by the entrance of a single pollen tube into one female gametophyte. To prevent polyspermy, Arabidopsis ovules avoid the attraction of multiple pollen tubes to one ovule-polytubey block. In Arabidopsis jagger mutants, a significant number of ovules attract more than one pollen tube to an ovule due to an impairment in synergid degeneration. JAGGER encodes a putative arabinogalactan protein which is predicted to be anchored to the plasma membrane by a glycosylphosphatidylinositol (GPI) anchor. Here, we show that JAGGER fused to citrine yellow fluorescent protein (JAGGER-cYFP) is functional and localizes mostly to the periphery of ovule integuments and transmitting tract cells. We further investigated the importance of GPI-anchor addition domains for JAGGER localization and function. Different JAGGER proteins with deletions in predicted ω-site regions and GPI attachment signal domain, expected to compromise the addition of the GPI anchor, led to disruption of JAGGER localization in the cell periphery. All JAGGER proteins with disrupted localization were also not able to rescue the polytubey phenotype, pointing to the importance of GPI-anchor addition to in vivo function of the JAGGER protein.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Glicosilfosfatidilinositoles , Óvulo Vegetal , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Glicosilfosfatidilinositoles/metabolismo , Óvulo Vegetal/metabolismo , Óvulo Vegetal/genética , Óvulo Vegetal/fisiología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Mucoproteínas/metabolismo , Mucoproteínas/genética , Tubo Polínico/metabolismo , Tubo Polínico/genética
6.
Plant Physiol ; 194(4): 2117-2135, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38060625

RESUMEN

The gynoecium is critical for the reproduction of flowering plants as it contains the ovules and the tissues that foster pollen germination, growth, and guidance. These tissues, known as the reproductive tract (ReT), comprise the stigma, style, and transmitting tract (TT). The ReT and ovules originate from the carpel margin meristem (CMM) within the pistil. SHOOT MERISTEMLESS (STM) is a key transcription factor for meristem formation and maintenance. In all above-ground meristems, including the CMM, local STM downregulation is required for organ formation. However, how this downregulation is achieved in the CMM is unknown. Here, we have studied the role of HISTONE DEACETYLASE 19 (HDA19) in Arabidopsis (Arabidopsis thaliana) during ovule and ReT differentiation based on the observation that the hda19-3 mutant displays a reduced ovule number and fails to differentiate the TT properly. Fluorescence-activated cell sorting coupled with RNA-sequencing revealed that in the CMM of hda19-3 mutants, genes promoting organ development are downregulated while meristematic markers, including STM, are upregulated. HDA19 was essential to downregulate STM in the CMM, thereby allowing ovule formation and TT differentiation. STM is ectopically expressed in hda19-3 at intermediate stages of pistil development, and its downregulation by RNA interference alleviated the hda19-3 phenotype. Chromatin immunoprecipitation assays indicated that STM is a direct target of HDA19 during pistil development and that the transcription factor SEEDSTICK is also required to regulate STM via histone acetylation. Thus, we identified factors required for the downregulation of STM in the CMM, which is necessary for organogenesis and tissue differentiation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Histonas/genética , Óvulo Vegetal/genética , Óvulo Vegetal/metabolismo , Arabidopsis/fisiología , Factores de Transcripción/metabolismo , Meristema , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética , Histona Desacetilasas/metabolismo
7.
Cell Surf ; 10: 100117, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38076635

RESUMEN

Arabinogalactan-proteins (AGPs) are a family of hyperglycosylated hydroxyproline-rich cell wall proteins found throughout the plant kingdom. To date, eight Hydroxyproline-galactosyltransferases (Hyp-GALTs), named GALT2-GALT9, are known to catalyze the addition of the first galactose sugar to Hyp residues in AGP protein cores. The generation and characterization of galt23456789 octuple mutants using CRISPR-Cas9 gene editing technology, provided strong reverse genetic evidence that AG glycans are essential for normal vegetative and reproductive growth, as these mutants demonstrated stunted growth, greatly delayed flowering and significant defects in floral organ development and morphogenesis. Compared to the lower seed set of galt25789 quintuple mutants being more so contributed by female gametophytic defects, dramatically low seed-set of octuple mutants was largely due to impaired male reproductive function, specifically due to shorter filaments, delayed anther dehiscence, and large decreases in pollen quantity and viability. Octuple mutant pollen had severely distorted reticulate exine, tectum patterning and intine thickness. Reduced amounts of galactose and arabinose in overall lower amounts of ß-Yariv precipitated AGPs illustrated how biological functions of AGPs are affected by abnormal glycosylation.

8.
Biomolecules ; 13(3)2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36979397

RESUMEN

Quantitative real-time polymerase chain reaction (qPCR) is a widely used method to analyse the gene expression pattern in the reproductive tissues along with detecting gene levels in mutant backgrounds. This technique requires stable reference genes to normalise the expression level of target genes. Nonetheless, a considerable number of publications continue to present qPCR results normalised to a single reference gene and, to our knowledge, no comparative evaluation of multiple reference genes has been carried out in specific reproductive tissues of Arabidopsis thaliana. Herein, we assessed the expression stability levels of ten candidate reference genes (UBC9, ACT7, GAPC-2, RCE1, PP2AA3, TUA2, SAC52, YLS8, SAMDC and HIS3.3) in two conditional sets: one across flower development and the other using inflorescences from different genotypes. The stability analysis was performed using the RefFinder tool, which combines four statistical algorithms (geNorm, NormFinder, BestKeeper and the comparative ΔCt method). Our results showed that RCE1, SAC52 and TUA2 had the most stable expression in different flower developmental stages while YLS8, HIS3.3 and ACT7 were the top-ranking reference genes for normalisation in mutant studies. Furthermore, we validated our results by analysing the expression pattern of genes involved in reproduction and examining the expression of these genes in published mutant backgrounds. Overall, we provided a pool of appropriate reference genes for expression studies in reproductive tissues of A. thaliana, which will facilitate further gene expression studies in this context. More importantly, we presented a framework that will promote a consistent and accurate analysis of gene expression in any scientific field. Simultaneously, we highlighted the relevance of clearly defining and describing the experimental conditions associated with qPCR to improve scientific reproducibility.


Asunto(s)
Arabidopsis , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Arabidopsis/genética , Reproducibilidad de los Resultados , Regulación de la Expresión Génica de las Plantas , Flores/genética , Perfilación de la Expresión Génica
10.
Ann Bot ; 131(5): 827-838, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36945741

RESUMEN

BACKGROUND AND AIMS: Morphogenesis occurs through accurate interaction between essential players to generate highly specialized plant organs. Fruit structure and function are triggered by a neat transcriptional control involving distinct regulator genes encoding transcription factors (TFs) or signalling proteins, such as the C2H2/C2HC zinc-finger NO TRANSMITTING TRACT (NTT) or the MADS-box protein SEEDSTICK (STK), which are important in setting plant reproductive competence, feasibly by affecting cell wall polysaccharide and lipid distribution. Arabinogalactan proteins (AGPs) are major components of the cell wall and are thought to be involved in the reproductive process as important players in specific stages of development. The detection of AGPs epitopes in reproductive tissues of NTT and other fruit development-related TFs, such as MADS-box proteins including SHATTERPROOF1 (SHP1), SHP2 and STK, was the focus of this study. METHODS: We used fluorescence microscopy to perform immunolocalization analyses on stk and ntt single mutants, on the ntt stk double mutant and on the stk shp1 shp2 triple mutant using specific anti-AGP monoclonal antibodies. In these mutants, the expression levels of selected AGP genes were also measured by quantitative real-time PCR and compared with the respective expression in wild-type (WT) plants. KEY RESULTS: The present immunolocalization study collects information on the distribution patterns of specific AGPs in Arabidopsis female reproductive tissues, complemented by the quantification of AGP expression levels, comparing WT, stk and ntt single mutants, the ntt stk double mutant and the stk shp1 shp2 triple mutant. CONCLUSIONS: These findings reveal distinct AGP distribution patterns in different developmental mutants related to the female reproductive unit in Arabidopsis. The value of the immunofluorescence labelling technique is highlighted in this study as an invaluable tool to dissect the remodelling nature of the cell wall in developmental processes.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Mucoproteínas/metabolismo , Proteínas de Dominio MADS/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...