Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Science ; 353(6297): 383-7, 2016 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-27463673

RESUMEN

Collections of cells called engrams are thought to represent memories. Although there has been progress in identifying and manipulating single engrams, little is known about how multiple engrams interact to influence memory. In lateral amygdala (LA), neurons with increased excitability during training outcompete their neighbors for allocation to an engram. We examined whether competition based on neuronal excitability also governs the interaction between engrams. Mice received two distinct fear conditioning events separated by different intervals. LA neuron excitability was optogenetically manipulated and revealed a transient competitive process that integrates memories for events occurring closely in time (coallocating overlapping populations of neurons to both engrams) and separates memories for events occurring at distal times (disallocating nonoverlapping populations to each engram).


Asunto(s)
Amígdala del Cerebelo/fisiología , Miedo/fisiología , Consolidación de la Memoria/fisiología , Recuerdo Mental/fisiología , Neuronas/fisiología , Amígdala del Cerebelo/citología , Animales , Comunicación Celular , Condicionamiento Psicológico , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Optogenética
2.
Genes Dev ; 26(24): 2780-801, 2012 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23222102

RESUMEN

The FoxO family of transcription factors is known to slow aging downstream from the insulin/IGF (insulin-like growth factor) signaling pathway. The most recently discovered FoxO isoform in mammals, FoxO6, is highly enriched in the adult hippocampus. However, the importance of FoxO factors in cognition is largely unknown. Here we generated mice lacking FoxO6 and found that these mice display normal learning but impaired memory consolidation in contextual fear conditioning and novel object recognition. Using stereotactic injection of viruses into the hippocampus of adult wild-type mice, we found that FoxO6 activity in the adult hippocampus is required for memory consolidation. Genome-wide approaches revealed that FoxO6 regulates a program of genes involved in synaptic function upon learning in the hippocampus. Consistently, FoxO6 deficiency results in decreased dendritic spine density in hippocampal neurons in vitro and in vivo. Thus, FoxO6 may promote memory consolidation by regulating a program coordinating neuronal connectivity in the hippocampus, which could have important implications for physiological and pathological age-dependent decline in memory.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Memoria/fisiología , Animales , Recuento de Células , Células Cultivadas , Espinas Dendríticas/genética , Espinas Dendríticas/metabolismo , Factores de Transcripción Forkhead/genética , Eliminación de Gen , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Hipocampo/citología , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Factores Reguladores Miogénicos/metabolismo , Sinapsis/genética , Sinapsis/metabolismo
3.
Nat Neurosci ; 15(9): 1255-64, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22885849

RESUMEN

Memory formation is thought to be mediated by dendritic-spine growth and restructuring. Myocyte enhancer factor 2 (MEF2) restricts spine growth in vitro, suggesting that this transcription factor negatively regulates the spine remodeling necessary for memory formation. Here we show that memory formation in adult mice was associated with changes in endogenous MEF2 levels and function. Locally and acutely increasing MEF2 function in the dentate gyrus blocked both learning-induced increases in spine density and spatial-memory formation. Increasing MEF2 function in amygdala disrupted fear-memory formation. We rescued MEF2-induced memory disruption by interfering with AMPA receptor endocytosis, suggesting that AMPA receptor trafficking is a key mechanism underlying the effects of MEF2. In contrast, decreasing MEF2 function in dentate gyrus and amygdala facilitated the formation of spatial and fear memory, respectively. These bidirectional effects indicate that MEF2 is a key regulator of plasticity and that relieving the suppressive effects of MEF2-mediated transcription permits memory formation.


Asunto(s)
Aprendizaje/fisiología , Memoria/fisiología , Factores Reguladores Miogénicos/fisiología , Plasticidad Neuronal/fisiología , Amígdala del Cerebelo/metabolismo , Amígdala del Cerebelo/fisiología , Animales , Western Blotting , Condicionamiento Psicológico/fisiología , Espinas Dendríticas/fisiología , Dependovirus , Endocitosis/fisiología , Miedo , Femenino , Vectores Genéticos , Hipocampo/citología , Hipocampo/fisiología , Inmunohistoquímica , Hibridación Fluorescente in Situ , Luciferasas/genética , Factores de Transcripción MEF2 , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Factores Reguladores Miogénicos/genética , Neuronas/fisiología , Receptores AMPA/fisiología , Simplexvirus/genética
4.
Neurobiol Dis ; 47(2): 201-9, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22521465

RESUMEN

Inherited defects in purine nucleoside phosphorylase (PNP) cause severe T cell immunodeficiency and progressive neurological dysfunction, yet little is known about the effects of PNP deficiency on the brain. PNP-KO mice display metabolic and immune anomalies similar to those observed in patients. Our objectives were to characterize brain abnormalities in PNP-KO mice and determine whether restoring PNP activity prevents these abnormalities. We analyzed structural brain defects in PNP-KO mice by magnetic resonance imaging, while assessing motor deficits using the accelerating rotarod and stationary balance beam tests. We detected morphological abnormalities and apoptosis in the cerebellum of PNP-KO mice by hematoxylin and eosin, electron microscopy, TUNEL and activated caspase 3 staining. We treated PNP-KO mice with PNP fused to the HIV-TAT protein transduction domain (TAT-PNP) from birth or from 4 weeks of age. Magnetic resonance imaging revealed a smaller than normal cerebellum in PNP-KO mice. PNP-KO mice displayed motor abnormalities including rapid fall from the rotating rod and frequent slips from the balance beam. The cerebellum of PNP-KO mice contained reduced purkinje cells (PC), which were irregular in shape and had degenerated dendrites. PC from the cerebellum of PNP-KO mice, expanded ex vivo, demonstrated increased apoptosis, which could be corrected by supplementing cultures with TAT-PNP. TAT-PNP injections restored PNP activity in the cerebellum of PNP-KO mice. TAT-PNP from birth, but not treatment initiated at 4 weeks of age, prevented the cerebellar PC damage and motor deficits. We conclude that PNP deficiency cause cerebellar abnormalities, including PC damage and progressive motor deficits. TAT-PNP treatment from birth can prevent the neurological abnormalities in PNP-KO mice.


Asunto(s)
Enfermedades Cerebelosas/enzimología , Enfermedades Cerebelosas/patología , Purina-Nucleósido Fosforilasa/deficiencia , Purina-Nucleósido Fosforilasa/metabolismo , Animales , Enfermedades Cerebelosas/tratamiento farmacológico , Cerebelo/anomalías , Cerebelo/enzimología , Cerebelo/patología , Progresión de la Enfermedad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Purina-Nucleósido Fosforilasa/genética , Células de Purkinje/enzimología , Células de Purkinje/patología
5.
Proc Natl Acad Sci U S A ; 108(20): 8456-60, 2011 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-21531906

RESUMEN

Remodeling of cortical connectivity is thought to allow initially hippocampus-dependent memories to be expressed independently of the hippocampus at remote time points. Consistent with this, consolidation of a contextual fear memory is associated with dendritic spine growth in neurons of the anterior cingulate cortex (aCC). To directly test whether such cortical structural remodeling is necessary for memory consolidation, we disrupted spine growth in the aCC at different times following contextual fear conditioning in mice. We took advantage of previous studies showing that the transcription factor myocyte enhancer factor 2 (MEF2) negatively regulates spinogenesis both in vitro and in vivo. We found that increasing MEF2-dependent transcription in the aCC during a critical posttraining window (but not at later time points) blocked both the consolidation-associated dendritic spine growth and subsequent memory expression. Together, these data strengthen the causal link between cortical structural remodeling and memory consolidation and, further, identify MEF2 as a key regulator of these processes.


Asunto(s)
Espinas Dendríticas/fisiología , Giro del Cíngulo/fisiología , Factores Reguladores Miogénicos/fisiología , Animales , Condicionamiento Psicológico/fisiología , Hipocampo/fisiología , Factores de Transcripción MEF2 , Ratones , Neuronas/ultraestructura , Transcripción Genética
6.
Learn Mem ; 15(6): 443-53, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18519545

RESUMEN

Although the lateral nucleus of the amygdala (LA) is essential for conditioned auditory fear memory, an emerging theme is that plasticity in multiple brain regions contributes to fear memory formation. The LA receives direct projections from the auditory thalamus, specifically the medial division of the medial geniculate nucleus (MGm) and adjacent posterior intralaminar nucleus (PIN). While traditionally viewed as a simple relay structure, mounting evidence implicates the thalamus in diverse cognitive processes. We investigated the role of plasticity in the MGm/PIN in auditory fear memory. First we found that auditory fear conditioning (but not control manipulations) increased the levels of activated CREB in both the MGm and PIN. Next, using viral vectors, we showed that exogenously increasing CREB in this region specifically enhanced formation of an auditory conditioned fear memory without affecting expression of an auditory fear memory, formation of a contextual fear memory, or basic auditory processing. Interestingly, mice with increased CREB levels in the MGm/PIN also showed broad auditory fear generalization (in contrast to control mice, they exhibited fear responses to tones of other frequencies). Together, these results implicate CREB-mediated plasticity in the MGm/PIN in both the formation and generalization of conditioned auditory fear memory. Not only do these findings refine our knowledge of the circuitry underlying fear memory but they also provide novel insights into the neural substrates that govern the degree to which acquired fear of a tone generalizes to other tones.


Asunto(s)
Corteza Auditiva/fisiología , Percepción Auditiva/fisiología , Proteína de Unión a CREB/fisiología , Condicionamiento Psicológico , Miedo , Memoria/fisiología , Tálamo/fisiología , Animales , Reacción Cataléptica de Congelación/fisiología , Ratones , Plasticidad Neuronal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...