Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 14(14): 16592-16600, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35330991

RESUMEN

We report on the morphology and mechanical properties of nanocomposite films derived from aqueous, hybrid liquid crystalline mixtures of rodlike aggregates of a sulfonated, all-aromatic polyamide, poly(2,2'-disulfonyl-4,4'-benzidine terephthalamide) (PBDT), and graphene oxide (GO) platelets. An isothermal step at 200 °C facilitates in situ partial thermal reduction of GO to reduced GO (rGO) in nanocomposite films. X-ray scattering studies reveal that PBDT-rGO nanocomposites exhibit both higher in-plane alignment of PBDT (the order parameter increases from 0.79 to 0.9 at 1.8 vol % rGO) and alignment along the casting direction (from 0.1 to 0.6 at 1.8 vol % rGO). From dynamic mechanical thermal analysis, the interaction between PBDT and rGO causes the ß-relaxation activation energy for PBDT to increase with rGO concentration. Modulus mapping of nanocomposites using atomic force microscopy demonstrates enhanced local stiffness, indicating reinforcement. From stress-strain analysis, the average Young's modulus increases from 16 to 37 GPa at 1.8 vol % rGO and the average tensile strength increases from 210 to 640 MPa. Despite polymer alignment along the casting direction, an average transverse tensile strength of 230 MPa is obtained.

2.
ACS Appl Mater Interfaces ; 12(19): 22256-22267, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32142249

RESUMEN

The processing conditions used in the production of advanced polymer fibers facilitate the formation of an oriented fibrillar network that consists of structures spanning multiple length scales. The irregular nature of fiber tensile fracture surfaces suggests that their structural integrity is defined by the degree of lateral (interfacial) interactions that exist within the fiber microstructure. To date, experimental studies have quantified interfacial adhesion between nanoscale fibrils measuring 10-50 nm in width, and the global fracture energy through applying peel loads to fiber halves. However, a more in-depth evaluation of tensile fracture indicates that fiber failure typically occurs at an intermediate length scale, involving fibrillation along interfaces between fibril bundles of a few 100s of nanometers in width. Interaction mechanisms at this length scale have not yet been studied, due in part to a lack of established experimental techniques. Here, a new focused ion beam-based sample preparation protocol is combined with nanoindentation to probe interfaces at the intermediate length scale in two high-performance fibers, a rigid-rod poly(p-phenylene terephthalamide) and a flexible chain ultrahigh molecular weight polyethylene fiber. Higher interfacial separation energy recorded in the rigid-rod fiber correlated with less intensive fibrillation during failure and is discussed in the context of fiber chemistry and processing. Power law scaling of the total absorbed interfacial separation energy at three different scales in the polyethylene fiber is observed and analyzed, and distinct energy absorption mechanisms, featuring a degree of self-similarity, are identified. The contribution of these mechanisms to the overall integrity of the fiber is discussed, and the importance of the intermediate scale is elucidated. Results from this study provide new insights into the mechanical implications of hierarchical lateral interactions and will aid in the development of novel fibers with further improved mechanical performance.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38486805

RESUMEN

Material extrusion (MatEx) is finding increasing applications in additive manufacturing of thermoplastics due to the ease of use and the ability to process disparate polymers. Since part strength is anisotropic and frequently deviates negatively with respect to parts produced by injection molding, an urgent challenge is to predict final properties of parts made through this method. A nascent effort is underway to develop theoretical and computational models of MatEx part properties, but these efforts require comprehensive experimental data for guidance and validation. As part of the AM-Bench framework, we provide here a thorough set of measurements on a model system: polycarbonate printed in a simple rectangular shape. For the precursor material (as-received filament), we perform rheology, gel permeation chromatography, and dynamical mechanical analysis, to ascertain critical material parameters such as molar mass distribution, glass transition, and shear thinning. Following processing, we conduct X-ray computed tomography, scanning electron microscopy, depth sensing indentation, and atomic force microscopy modulus mapping. These measurements provide information related to pores, method of failure, and local modulus variations. Finally, we conduct tensile testing to assess strength and degree of anisotropy of mechanical properties. We find several effects that lead to degradation of tensile properties including the presence of pore networks, poor interfacial bonding, variations in interfacial mechanical behavior between rasters, and variable interaction of the neighboring builds within the melt state. The results provide insight into the processing-structure-property relationships and should serve as benchmarks for the development of mechanical models.

4.
ACS Appl Mater Interfaces ; 8(33): 21221-7, 2016 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-27328035

RESUMEN

To date, the directed in situ synthesis of fluorescent gold nanoclusters (AuNCs) has only been demonstrated in cancerous cells, with the theorized synthesis mechanism prohibiting AuNC formation in nontumorigenic cell lines. This limitation hinders potential biostabilized AuNC-based technology in healthy cells involving both chemical and mechanical analysis, such as the direct sensing of protein function and the elucidation of local mechanical environments. Thus, new synthesis strategies are required to expand the application space of AuNCs beyond cancer-focused cellular studies. In this contribution, we have developed the methodology and demonstrated the direct in situ synthesis of AuNCs in the nontumorigenic neuronal microglial line, C8B4. The as-synthesized AuNCs form in situ and are stabilized by cellular proteins. The clusters exhibit bright green fluorescence and demonstrate low (<10%) toxicity. Interestingly, elevated ROS levels were not required for the in situ formation of AuNCs, although intracellular reductants such as glutamate were required for the synthesis of AuNCs in C8B4 cells. To our knowledge, this is the first-ever demonstration of AuNC synthesis in nontumorigenic cells and, as such, it considerably expands the application space of biostabilized fluorescent AuNCs.


Asunto(s)
Oro/química , Fluorescencia , Nanopartículas del Metal , Espectrometría de Fluorescencia
5.
Adv Mater ; 27(31): 4640-8, 2015 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-26140355

RESUMEN

The direct synthesis of monolayer and multilayer ReS2 by chemical vapor deposition at a low temperature of 450 °C is reported. Detailed characterization of this material is performed using various spectroscopy and microscopy methods. Furthermore initial field-effect transistor characteristics are evaluated, which highlight the potential in being used as an n-type semiconductor.

6.
Anal Chem ; 86(15): 7377-82, 2014 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-24999001

RESUMEN

Here we present the synthesis of the enzyme DNase 1 stabilized gold nanoclusters (DNase 1:AuNCs) with core size consisting of either 8 or 25 atoms. The DNase 1:Au8NCs exhibit blue fluorescence whereas the DNase 1:Au25NCs are red emitting. In addition to the intense fluorescence emission, the synthesized DNase 1:AuNC hybrid retains the native functionality of the protein, allowing simultaneous detection and digestion of DNA with a detection limit of 2 µg/mL. The DNase 1:AuNCs could be conveniently employed as efficient and fast sensors to augment the current time-consuming DNA contamination analysis techniques.


Asunto(s)
Desoxirribonucleasa I/metabolismo , Endodesoxirribonucleasas/metabolismo , Oro/química , Nanoestructuras , Análisis Espectral
7.
Nano Lett ; 12(11): 5616-21, 2012 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-23030825

RESUMEN

Here, we design and develop high-power electric double-layer capacitors (EDLCs) using carbon-based three dimensional (3-D) hybrid nanostructured electrodes. 3-D hybrid nanostructured electrodes consisting of vertically aligned carbon nanotubes (CNTs) on highly porous carbon nanocups (CNCs) were synthesized by a combination of anodization and chemical vapor deposition techniques. A 3-D electrode-based supercapacitor showed enhanced areal capacitance by accommodating more charges in a given footprint area than that of a conventional CNC-based device.

8.
Am J Psychiatry ; 159(1): 116-21, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11772699

RESUMEN

OBJECTIVE: Because treatment of the depressed phase of bipolar disorder is a clinical challenge and hypothyroidism is known to be associated with depression, the authors examined the relationship between pretreatment thyroid values and response to antidepressant treatment. It was hypothesized that subjects with lower thyroid function, even within the normal range, would have a poorer response to initial treatment. METHOD: The subjects were 65 patients in the depressed phase of bipolar I disorder who were enrolled in a larger ongoing study. A panel of thyroid measures, including thyroid-stimulating hormone (TSH), thyroxine, triiodothyronine resin uptake, and free thyroxine index (FTI), were determined before initiation of algorithm-guided treatment. The effect of each thyroid measurement on time to remission was estimated by using the Cox proportional hazards model. RESULTS: Both lower values of FTI and higher values of TSH were significantly associated with longer times to remission, i.e., slower response to treatment. Outcomes were relatively poor unless patients had FTI values above the median and TSH values below the median. Patients with this optimal profile experienced remission 4 months faster than the remainder of the study group. CONCLUSIONS: This study provides further evidence that patients with bipolar disorder are particularly sensitive to variations in thyroid function within the normal range. Our results suggest that nearly three-quarters of patients with bipolar disorder have a thyroid profile that may be suboptimal for antidepressant response. It remains to be seen whether pharmacological enhancement of thyroid function will facilitate recovery from bipolar depression.


Asunto(s)
Antidepresivos/uso terapéutico , Antimaníacos/uso terapéutico , Trastorno Bipolar/tratamiento farmacológico , Trastorno Depresivo Mayor/tratamiento farmacológico , Pruebas de Función de la Tiroides , Adulto , Antidepresivos/efectos adversos , Antimaníacos/efectos adversos , Trastorno Bipolar/sangre , Trastorno Bipolar/diagnóstico , Trastorno Depresivo Mayor/sangre , Trastorno Depresivo Mayor/diagnóstico , Quimioterapia Combinada , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Hormonas Tiroideas/sangre , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...