Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Neuropsychopharmacology ; 47(3): 652-663, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34545194

RESUMEN

Parvalbumin-expressing fast-spiking interneurons (PV-INs) within feedforward microcircuits in the nucleus accumbens (NAc) coordinate goal-directed motivational behavior. Feedforward inhibition of medium spiny projection neurons (MSNs) is initiated by glutamatergic input from corticolimbic brain structures. While corticolimbic synapses onto MSNs are targeted by the psychostimulant, cocaine, it remains unknown whether cocaine also exerts acute neuromodulatory actions at collateralizing synapses onto PV-INs. Using whole-cell patch-clamp electrophysiology, optogenetics, and pharmacological tools in transgenic reporter mice, we found that cocaine decreases thalamocortical glutamatergic drive onto PV-INs by engaging a monoamine-independent mechanism. This mechanism relies on postsynaptic sigma-1 (σ1) activity, leading to the mobilization of intracellular Ca2+ stores that trigger retrograde endocannabinoid signaling at presynaptic type-1 cannabinoid receptors (CB1R). Cocaine-evoked CB1R activity occludes the expression of CB1R-dependent long-term depression (LTD) at this synaptic locus. These findings provide evidence that acute cocaine exposure targets feedforward microcircuits in the NAc and extend existing models of cocaine action on mesolimbic reward circuits.


Asunto(s)
Cocaína , Núcleo Accumbens , Animales , Cocaína/farmacología , Interneuronas/fisiología , Ratones , Núcleo Accumbens/metabolismo , Parvalbúminas/metabolismo , Sinapsis/metabolismo
2.
Neuropsychopharmacology ; 46(13): 2340-2349, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34400782

RESUMEN

The dynorphin/kappa opioid receptor (KOR) system within the nucleus accumbens (NAc) contributes to affective states. Parvalbumin fast-spiking interneurons (PV-FSIs), a key component of feedforward inhibition, participate in integration of excitatory inputs to the NAc by robustly inhibiting select populations of medium spiny output neurons, therefore greatly influencing NAc dependent behavior. How the dynorphin/KOR system regulates feedforward inhibition in the NAc remains unknown. Here, we elucidate the molecular mechanisms of KOR inhibition of excitatory transmission onto NAc PV-FSIs using a combination of whole-cell patch-clamp electrophysiology, optogenetics, pharmacology, and a parvalbumin reporter mouse. We find that postsynaptic KOR stimulation induces long-term depression (LTD) of excitatory synapses onto PV-FSI by stimulating the endocytosis of AMPARs via a PKA and calcineurin-dependent mechanism. Furthermore, KOR regulation of PV-FSI synapses are input specific, inhibiting thalamic but not cortical inputs. Finally, following acute stress, a protocol known to elevate dynorphin/KOR signaling in the NAc, KOR agonists no longer inhibit excitatory transmission onto PV-FSI. In conclusion, we delineate pathway-specific mechanisms mediating KOR control of feedforward inhibitory circuits in the NAc and provide evidence for the recruitment of this system in response to stress.


Asunto(s)
Núcleo Accumbens , Receptores Opioides kappa , Animales , Interneuronas/metabolismo , Ratones , Núcleo Accumbens/metabolismo , Parvalbúminas/metabolismo , Sinapsis/metabolismo
3.
J Neurosci ; 41(17): 3752-3763, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33737458

RESUMEN

The nucleus accumbens shell (NAcSh) receives extensive monoaminergic input from multiple midbrain structures. However, little is known how norepinephrine (NE) modulates NAc circuit dynamics. Using a dynamic electrophysiological approach with optogenetics, pharmacology, and drugs acutely restricted by tethering (DART), we explored microcircuit-specific neuromodulatory mechanisms recruited by NE signaling in the NAcSh of parvalbumin (PV)-specific reporter mice. Surprisingly, NE had little direct effect on modulation of synaptic input at medium spiny projection neurons (MSNs). In contrast, we report that NE transmission selectively modulates glutamatergic synapses onto PV-expressing fast-spiking interneurons (PV-INs) by recruiting postsynaptically-localized α2-adrenergic receptors (ARs). The synaptic effects of α2-AR activity decrease PV-IN-dependent feedforward inhibition onto MSNs evoked via optogenetic stimulation of cortical afferents to the NAcSh. These findings provide insight into a new circuit motif in which NE has a privileged line of communication to tune feedforward inhibition in the NAcSh.SIGNIFICANCE STATEMENT The nucleus accumbens (NAc) directs reward-related motivational output by integrating glutamatergic input with diverse neuromodulatory input from monoamine centers. The present study reveals a synapse-specific regulatory mechanism recruited by norepinephrine (NE) signaling within parvalbumin-expressing interneuron (PV-IN) feedforward inhibitory microcircuits. PV-IN-mediated feedforward inhibition in the NAc is instrumental in coordinating NAc output by synchronizing the activity of medium spiny projection neurons (MSNs). By negatively regulating glutamatergic transmission onto PV-INs via α2-adrenergic receptors (ARs), NE diminishes feedforward inhibition onto MSNs to promote NAc output. These findings elucidate previously unknown microcircuit mechanisms recruited by the historically overlooked NE system in the NAc.


Asunto(s)
Norepinefrina/fisiología , Núcleo Accumbens/fisiología , Sistema Nervioso Parasimpático/fisiología , Transmisión Sináptica/fisiología , Animales , Fenómenos Electrofisiológicos , Femenino , Interneuronas/efectos de los fármacos , Masculino , Ratones , Red Nerviosa/efectos de los fármacos , Inhibición Neural , Neuronas/efectos de los fármacos , Optogenética , Parvalbúminas , Técnicas de Placa-Clamp , Receptores Adrenérgicos alfa 2/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
4.
Epigenetics Chromatin ; 12(1): 7, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30616667

RESUMEN

Epigenetic modifications such as histone methylation permit change in chromatin structure without accompanying change in the underlying genomic sequence. A number of studies in animal models have shown that dysregulation of various components of the epigenetic machinery causes cognitive deficits at the behavioral level, suggesting that proper epigenetic control is necessary for the fundamental processes of learning and memory. Histone H3 lysine K4 (H3K4) methylation comprises one component of such epigenetic control, and global levels of this mark are increased in the hippocampus during memory formation. Modifiers of H3K4 methylation are needed for memory formation, shown through animal studies, and many of the same modifiers are mutated in human cognitive diseases. Indeed, all of the known H3K4 methyltransferases and four of the known six H3K4 demethylases have been associated with impaired cognition in a neurologic or psychiatric disorder. Cognitive impairment in such patients often manifests as intellectual disability, consistent with a role for H3K4 methylation in learning and memory. As a modification quintessentially, but not exclusively, associated with transcriptional activity, H3K4 methylation provides unique insights into the regulatory complexity of writing, reading, and erasing chromatin marks within an activated neuron. The following review will discuss H3K4 methylation and connect it to transcriptional events required for learning and memory within the developed nervous system. This will include an initial discussion of the most recent advances in the developing methodology to analyze H3K4 methylation, namely mass spectrometry and deep sequencing, as well as how these methods can be applied to more deeply understand the biology of this mark in the brain. We will then introduce the core enzymatic machinery mediating addition and removal of H3K4 methylation marks and the resulting epigenetic signatures of these marks throughout the neuronal genome. We next foray into the brain, discussing changes in H3K4 methylation marks within the hippocampus during memory formation and retrieval, as well as the behavioral correlates of H3K4 methyltransferase deficiency in this region. Finally, we discuss the human cognitive diseases connected to each H3K4 methylation modulator and summarize advances in developing drugs to target them.


Asunto(s)
Trastornos del Conocimiento/genética , Código de Histonas , Histonas/metabolismo , Memoria , Animales , Trastornos del Conocimiento/metabolismo , Histonas/química , Humanos , Metilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA