Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancer Immunol Immunother ; 73(11): 221, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235531

RESUMEN

BACKGROUND: Neuroblastoma is the most common extracranial solid tumor in children and accounts for 15% of pediatric cancer related deaths. Targeting neuroblastoma with immunotherapies has proven challenging due to a paucity of immune cells in the tumor microenvironment and the release of immunosuppressive cytokines by neuroblastoma tumor cells. We hypothesized that combining an oncolytic Herpes Simplex Virus (oHSV) with natural killer (NK) cells might overcome these barriers and incite tumor cell death. METHODS: We utilized MYCN amplified and non-amplified neuroblastoma cell lines, the IL-12 expressing oHSV, M002, and the human NK cell line, NK-92 MI. We assessed the cytotoxicity of NK cells against neuroblastoma with and without M002 infection, the effects of M002 on NK cell priming, and the impact of M002 and priming on the migratory capacity and CD107a expression of NK cells. To test clinical applicability, we then investigated the effects of M002 and NK cells on neuroblastoma in vivo. RESULTS: NK cells were more attracted to neuroblastoma cells that were infected with M002. There was an increase in neuroblastoma cell death with the combination treatment of M002 and NK cells both in vitro and in vivo. Priming the NK cells enhanced their cytotoxicity, migratory capacity and CD107a expression. CONCLUSIONS: To the best of our knowledge, these investigations are the first to demonstrate the effects of an oncolytic virus combined with self-maintaining NK cells in neuroblastoma and the priming effect of neuroblastoma on NK cells. The current studies provide a deeper understanding of the relation between NK cells and neuroblastoma and these data suggest that oHSV increases NK cell cytotoxicity towards neuroblastoma.


Asunto(s)
Células Asesinas Naturales , Neuroblastoma , Viroterapia Oncolítica , Neuroblastoma/terapia , Neuroblastoma/inmunología , Células Asesinas Naturales/inmunología , Humanos , Viroterapia Oncolítica/métodos , Animales , Ratones , Línea Celular Tumoral , Virus Oncolíticos/inmunología , Citotoxicidad Inmunológica , Simplexvirus/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
2.
iScience ; 27(4): 109288, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38532886

RESUMEN

RNA-binding proteins (RBPs) are emerging as important regulators of cancer pathogenesis. We reveal that the RBPs LARP4A and LARP4B are differentially overexpressed in osteosarcoma and osteosarcoma lung metastases, as well as in prostate cancer. Depletion of LARP4A and LARP4B reduced tumor growth and metastatic spread in xenografts, as well as inhibiting cell proliferation, motility, and migration. Transcriptomic profiling and high-content multiparametric analyses unveiled a central role for LARP4B, but not LARP4A, in regulating cell cycle progression in osteosarcoma and prostate cancer cells, potentially through modulating key cell cycle proteins such as Cyclins B1 and E2, Aurora B, and E2F1. This first systematic comparison between LARP4A and LARP4B assigns new pro-tumorigenic functions to LARP4A and LARP4B in bone and prostate cancer, highlighting their similarities while also indicating distinct functional differences. Uncovering clear biological roles for these paralogous proteins provides new avenues for identifying tissue-specific targets and potential druggable intervention.

3.
Int J Biochem Cell Biol ; 161: 106441, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37356415

RESUMEN

Recent developments have mounted a stunning body of evidence underlying the importance of RNA binding proteins (RBPs) in cancer research. In this minireview we focus on LARP4A and LARP4B, two paralogs belonging to the superfamily of La-related proteins, and provide a critical overview of current research, including their roles in cancer pathogenesis and cell proliferation, migration, cell cycle and apoptosis. We highlight current controversies surrounding LARP4A and LARP4B and conclude that their complex roles in tumorigenesis are cell-, tissue- and context-dependent, warning that caution must be exercised before categorising either protein as an oncoprotein or tumour-suppressor. We also reveal that LARP4A and LARP4B have often been confused with one another, adding uncertainty in delineating their functions. We suggest that further functional and mechanistic studies of LARP4 proteins present significant challenges for future investigations to recognise the vital contributions of these RBPs in cancer research.


Asunto(s)
Neoplasias , Ribonucleoproteínas , Humanos , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Autoantígenos/genética , Neoplasias/genética , Proteínas de Unión al ARN/genética , Genes Supresores de Tumor
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...