Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Mov Ecol ; 9(1): 32, 2021 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-34120657

RESUMEN

BACKGROUND: In-flight conditions are hypothesized to influence the timing and success of long-distance migration. Wind assistance and thermal uplift are thought to reduce the energetic costs of flight, humidity, air pressure and temperature may affect the migrants' water balance, and clouds may impede navigation. Recent advances in animal-borne long-distance tracking enable evaluating the importance of these factors in determining animals' flight altitude. METHODS: Here we determine the effects of wind, humidity, temperature, cloud cover, and altitude (as proxy for climbing costs and air pressure) on flight altitude selection of two long-distance migratory shorebirds, far eastern curlew (Numenius madagascariensis) and whimbrel (Numenius phaeopus). To reveal the predominant drivers of flight altitude selection during migration we compared the atmospheric conditions at the altitude the birds were found flying with conditions elsewhere in the air column using conditional logistic mixed effect models. RESULTS: Our results demonstrate that despite occasional high-altitude migrations (up to 5550 m above ground level), our study species typically forego flying at high altitudes, limiting climbing costs and potentially alleviating water loss and facilitating navigation. While mainly preferring migrating at low altitude, notably in combination with low air temperature, the birds also preferred flying with wind support to likely reduce flight costs. They avoided clouds, perhaps to help navigation or to reduce the risks from adverse weather. CONCLUSIONS: We conclude that the primary determinant of avian migrant's flight altitude selection is a preference for low altitude, with wind support as an important secondary factor. Our approach and findings can assist in predicting climate change effects on migration and in mitigating bird strikes with air traffic, wind farms, power lines, and other human-made structures.

3.
Nature ; 540(7631): 109-113, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27880762

RESUMEN

The behavioural rhythms of organisms are thought to be under strong selection, influenced by the rhythmicity of the environment. Such behavioural rhythms are well studied in isolated individuals under laboratory conditions, but free-living individuals have to temporally synchronize their activities with those of others, including potential mates, competitors, prey and predators. Individuals can temporally segregate their daily activities (for example, prey avoiding predators, subordinates avoiding dominants) or synchronize their activities (for example, group foraging, communal defence, pairs reproducing or caring for offspring). The behavioural rhythms that emerge from such social synchronization and the underlying evolutionary and ecological drivers that shape them remain poorly understood. Here we investigate these rhythms in the context of biparental care, a particularly sensitive phase of social synchronization where pair members potentially compromise their individual rhythms. Using data from 729 nests of 91 populations of 32 biparentally incubating shorebird species, where parents synchronize to achieve continuous coverage of developing eggs, we report remarkable within- and between-species diversity in incubation rhythms. Between species, the median length of one parent's incubation bout varied from 1-19 h, whereas period length-the time in which a parent's probability to incubate cycles once between its highest and lowest value-varied from 6-43 h. The length of incubation bouts was unrelated to variables reflecting energetic demands, but species relying on crypsis (the ability to avoid detection by other animals) had longer incubation bouts than those that are readily visible or who actively protect their nest against predators. Rhythms entrainable to the 24-h light-dark cycle were less prevalent at high latitudes and absent in 18 species. Our results indicate that even under similar environmental conditions and despite 24-h environmental cues, social synchronization can generate far more diverse behavioural rhythms than expected from studies of individuals in captivity. The risk of predation, not the risk of starvation, may be a key factor underlying the diversity in these rhythms.


Asunto(s)
Charadriiformes/fisiología , Comportamiento de Nidificación/fisiología , Periodicidad , Conducta Predatoria , Animales , Evolución Biológica , Charadriiformes/clasificación , Ritmo Circadiano , Señales (Psicología) , Ambiente , Conducta Alimentaria , Femenino , Masculino , Fotoperiodo , Reproducción , Especificidad de la Especie , Inanición/veterinaria , Factores de Tiempo , Cigoto/crecimiento & desarrollo
4.
Mov Ecol ; 4: 12, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27134752

RESUMEN

BACKGROUND: Geolocators are useful for tracking movements of long-distance migrants, but potential negative effects on birds have not been well studied. We tested for effects of geolocators (0.8-2.0 g total, representing 0.1-3.9 % of mean body mass) on 16 species of migratory shorebirds, including five species with 2-4 subspecies each for a total of 23 study taxa. Study species spanned a range of body sizes (26-1091 g) and eight genera, and were tagged at 23 breeding and eight nonbreeding sites. We compared breeding performance and return rates of birds with geolocators to control groups while controlling for potential confounding variables. RESULTS: We detected negative effects of tags for three small-bodied species. Geolocators reduced annual return rates for two of 23 taxa: by 63 % for semipalmated sandpipers and by 43 % for the arcticola subspecies of dunlin. High resighting effort for geolocator birds could have masked additional negative effects. Geolocators were more likely to negatively affect return rates if the total mass of geolocators and color markers was 2.5-5.8 % of body mass than if tags were 0.3-2.3 % of body mass. Carrying a geolocator reduced nest success by 42 % for semipalmated sandpipers and tripled the probability of partial clutch failure in semipalmated and western sandpipers. Geolocators mounted perpendicular to the leg on a flag had stronger negative effects on nest success than geolocators mounted parallel to the leg on a band. However, parallel-band geolocators were more likely to reduce return rates and cause injuries to the leg. No effects of geolocators were found on breeding movements or changes in body mass. Among-site variation in geolocator effect size was high, suggesting that local factors were important. CONCLUSIONS: Negative effects of geolocators occurred only for three of the smallest species in our dataset, but were substantial when present. Future studies could mitigate impacts of tags by reducing protruding parts and minimizing use of additional markers. Investigators could maximize recovery of tags by strategically deploying geolocators on males, previously marked individuals, and successful breeders, though targeting subsets of a population could bias the resulting migratory movement data in some species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA