Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 12(34): 21968-21977, 2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-36043064

RESUMEN

Proteolysis targeting chimeras (PROTACs) represent an emerging class of compounds for innovative therapeutic application. Their bifunctional nature induces the formation of a ternary complex (target protein/PROTAC/E3 ligase) which allows target protein ubiquitination and subsequent proteasomal-dependent degradation. To date, despite great efforts being made to improve their biological efficacy PROTACs rational design still represents a challenging task, above all for the modulation of their physicochemical and pharmacokinetics properties. Considering the pivotal role played by the linker moiety, recently the insertion of a piperazine moiety into the PROTAC linker has been widely used, as this ring can in principle improve rigidity and increase solubility upon protonation. Nevertheless, the pK a of the piperazine ring is significantly affected by the chemical groups located nearby, and slight modifications in the linker could eliminate the desired effect. In the present study, the pK a values of a dataset of synthesized small molecule compounds including PROTACs and their precursors have been evaluated in order to highlight how a fine modulation of piperazine-containing linkers can impact the protonation state of these molecules or similar heterobifunctional ones. Finally, the possibility of predicting the trend through in silico approaches was also evaluated.

2.
FEBS J ; 289(20): 6099-6118, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34145969

RESUMEN

Indoleamine 2,3-dioxygenase 1 (IDO1) catalyzes the initial rate-limiting step in the degradation of the essential amino acid tryptophan along the kynurenine pathway. When discovered more than 50 years ago, IDO1 was thought to be an effector molecule capable of mediating a survival strategy based on the deprivation of bacteria and tumor cells of the essential amino acid tryptophan. Since 1998, when tryptophan catabolism was discovered to be crucially involved in the maintenance of maternal T-cell tolerance, IDO1 has become the focus of several laboratories around the world. Indeed, IDO1 is now considered as an authentic immune regulator not only in pregnancy, but also in autoimmune diseases, chronic inflammation, and tumor immunity. However, in the last years, a bulk of new information-including structural, biological, and functional evidence-on IDO1 has come to light. For instance, we now know that IDO1 has a peculiar conformational plasticity and, in addition to a complex and highly regulated catalytic activity, is capable of performing a nonenzymic function that reprograms the expression profile of immune cells toward a highly immunoregulatory phenotype. With this state-of-the-art review, we aimed at gathering the most recent information obtained for this eclectic protein as well as at highlighting the major unresolved questions.


Asunto(s)
Indolamina-Pirrol 2,3,-Dioxigenasa , Quinurenina , Tolerancia Inmunológica , Inmunidad , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Quinurenina/metabolismo , Triptófano/metabolismo
3.
ChemMedChem ; 16(18): 2732-2743, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34137184

RESUMEN

Since its discovery at the beginning of the past century, the essential nutrient l-Tryptophan (l-Trp) and its catabolic pathways have acquired an increasing interest in an ever wider scientific community for their pivotal roles in underlying many important physiological functions and associated pathological conditions. As a consequence, enzymes catalyzing rate limiting steps along l-Trp catabolic pathways - including IDO1, TDO, TPH1 and TPH2 - have turned to be interesting drug targets for the design and development of novel therapeutic agents for different disorders such as carcinoid syndrome, cancer and autoimmune diseases. This article provides a fresh comparative overview on the most recent advancements that crystallographic studies, biophysical and computational works have brought on structural aspects and molecular recognition patterns of these enzymes toward l-Trp. Finally, a conformational analysis of l-Trp is also discussed as part of the molecular recognition process governing the binding of a substrate to its cognate enzymes.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Triptófano Hidroxilasa/antagonistas & inhibidores , Triptófano Oxigenasa/antagonistas & inhibidores , Sitios de Unión/efectos de los fármacos , Inhibidores Enzimáticos/química , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Modelos Moleculares , Estructura Molecular , Triptófano Hidroxilasa/metabolismo , Triptófano Oxigenasa/metabolismo
4.
J Struct Biol ; 213(2): 107714, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33667636

RESUMEN

SLC26A5 transporter prestin is fundamental for the higher hearing sensitivity and frequency selectivity of mammals. Prestin is a voltage-dependent transporter found in the cochlear outer hair cells responsible for their electromotility. Intracellular chloride binding is considered essential for voltage sensitivity and electromotility. Prestin is composed by a transmembrane domain and by a cytosolic domain called STAS. There is evidence of a calcium/calmodulin regulation of prestin mediated by the STAS domain. Using different biophysical techniques, namely SEC, CD, ITC, MST, NMR and SAXS, here we demonstrate and characterize the direct interaction between calmodulin and prestin STAS. We show that the interaction is calcium-dependent and that involves residues at the N-terminal end of the "variable loop". This is an intrinsically disordered insertion typical of the STAS domains of the SLC26 family of transporters whose function is still unclear. We derive a low-resolution model of the STAS/CaM complex, where only one lobe of calmodulin is engaged in the interaction, and build a model for the entire dimeric prestin in complex with CaM, which can use the unoccupied lobe to interact with other regions of prestin or with other regulatory proteins. We show that also a non-mammalian STAS can interact with calmodulin via the variable loop. These data start to shed light on the regulatory role of the STAS variable loop of prestin.


Asunto(s)
Calmodulina/metabolismo , Transportadores de Sulfato/química , Transportadores de Sulfato/metabolismo , Animales , Sitios de Unión , Calcio/metabolismo , Calmodulina/química , Pollos , Cromatografía en Gel , Dicroismo Circular , Espectroscopía de Resonancia Magnética , Conformación Proteica , Dominios Proteicos , Dispersión del Ángulo Pequeño , Difracción de Rayos X
5.
ChemMedChem ; 16(3): 568-577, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33085193

RESUMEN

The interaction between programmed cell death-1 (PD-1) and its ligand PD-L1 activates a coinhibitory signal that blocks T-cell activation, promoting the immune escape process in the tumor microenvironment. Development of monoclonal antibodies targeting and inhibiting PD-1/PD-L1 interaction as anticancer immunotherapies has proved successful in multiple clinical settings and for various types of cancer. Notwithstanding, limitations exist with the use of these biologics, including drug resistance and narrow therapeutic response rate in a majority of patients, that demand for the design of more efficacious small molecule-based immunotherapies. Alteration of pH in the tumor microenvironment is a key factor that is involved in promoting drug resistance, tumor survival and progression. In this study, we have investigated the effect of pH shifts on binding properties of distinct classes of PD-L1 inhibitors, including macrocyclic peptide and small molecules. Results expand structure-activity relationships of PD-L1 inhibitors, providing insights into structural features and physicochemical properties that are useful for the design of ligands that may escape a drug resistance mechanism associated to variable pH conditions of tumor microenvironment.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Antineoplásicos Inmunológicos/farmacología , Antígeno B7-H1/antagonistas & inhibidores , Inhibidores de Puntos de Control Inmunológico/farmacología , Neoplasias/terapia , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Anticuerpos Monoclonales/química , Antineoplásicos Inmunológicos/síntesis química , Antineoplásicos Inmunológicos/química , Antígeno B7-H1/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Concentración de Iones de Hidrógeno , Inhibidores de Puntos de Control Inmunológico/síntesis química , Inhibidores de Puntos de Control Inmunológico/química , Inmunoterapia , Modelos Moleculares , Estructura Molecular , Neoplasias/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Relación Estructura-Actividad
6.
EMBO Rep ; 21(12): e49756, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33159421

RESUMEN

Knowledge of a protein's spatial dynamics at the subcellular level is key to understanding its function(s), interactions, and associated intracellular events. Indoleamine 2,3-dioxygenase 1 (IDO1) is a cytosolic enzyme that controls immune responses via tryptophan metabolism, mainly through its enzymic activity. When phosphorylated, however, IDO1 acts as a signaling molecule in plasmacytoid dendritic cells (pDCs), thus activating genomic effects, ultimately leading to long-lasting immunosuppression. Whether the two activities-namely, the catalytic and signaling functions-are spatially segregated has been unclear. We found that, under conditions favoring signaling rather than catabolic events, IDO1 shifts from the cytosol to early endosomes. The event requires interaction with class IA phosphoinositide 3-kinases (PI3Ks), which become activated, resulting in full expression of the immunoregulatory phenotype in vivo in pDCs as resulting from IDO1-dependent signaling events. Thus, IDO1's spatial dynamics meet the needs for short-acting as well as durable mechanisms of immune suppression, both under acute and chronic inflammatory conditions. These data expand the theoretical basis for an IDO1-centered therapy in inflammation and autoimmunity.


Asunto(s)
Indolamina-Pirrol 2,3,-Dioxigenasa , Fosfatidilinositol 3-Quinasas , Células Dendríticas/metabolismo , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Inflamación , Fosfatidilinositol 3-Quinasas/genética , Transducción de Señal
7.
ChemMedChem ; 15(10): 891-899, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32190988

RESUMEN

A large number of crystallographic structures of IDO1 in different ligand-bound and -unbound states have been disclosed over the last decade. Yet, only a few of them have been exploited for structure-based drug design (SBDD) campaigns. In this study, we analyzed the structural motifs and molecular-recognition properties of three groups of IDO1 structures: 1) structures containing the heme group and inhibitors in the catalytic site; 2) heme-free structures of IDO1; 3) substrate-bound structures of IDO1. The results suggest that unrelated conformations of the enzyme have been solved with different ligand-induced changes of secondary motifs that localize even in regions remote from the catalytic site. Moreover, the study identified an uncharted region of molecular-recognition space covered by IDO1 binding sites that could guide the selection of diverse structures for additional SBDD studies aimed at the identification of novel lead compounds with differentiated chemical scaffolds.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Sitios de Unión/efectos de los fármacos , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/química , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Ligandos , Modelos Moleculares , Conformación Molecular , Pliegue de Proteína
8.
J Med Chem ; 63(6): 3047-3065, 2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-32150677

RESUMEN

In this study, a successful medicinal chemistry campaign that exploited virtual, biophysical, and biological investigations led to the identification of a novel class of IDO1 inhibitors based on a benzimidazole substructure. This family of compounds is endowed with an extensive bonding network in the protein active site, including the interaction with pocket C, a region not commonly exploited by previously reported IDO1 inhibitors. The tight packing of selected compounds within the enzyme contributes to the strong binding interaction with IDO1, to the inhibitory potency at the low nanomolar level in several tumoral settings, and to the selectivity toward IDO1 over TDO and CYPs. Notably, a significant reduction of L-Kyn levels in plasma, together with a potent effect on abrogating immunosuppressive properties of MDSC-like cells isolated from patients affected by pancreatic ductal adenocarcinoma, was observed, pointing to this class of molecules as a valuable template for boosting the antitumor immune system.


Asunto(s)
Bencimidazoles/química , Bencimidazoles/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Animales , Bencimidazoles/sangre , Línea Celular Tumoral , Células Cultivadas , Inhibidores Enzimáticos/sangre , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/química , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Masculino , Ratones , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad
9.
Proc Natl Acad Sci U S A ; 117(7): 3848-3857, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32024760

RESUMEN

l-tryptophan (Trp), an essential amino acid for mammals, is the precursor of a wide array of immunomodulatory metabolites produced by the kynurenine and serotonin pathways. The kynurenine pathway is a paramount source of several immunoregulatory metabolites, including l-kynurenine (Kyn), the main product of indoleamine 2,3-dioxygenase 1 (IDO1) that catalyzes the rate-limiting step of the pathway. In the serotonin pathway, the metabolite N-acetylserotonin (NAS) has been shown to possess antioxidant, antiinflammatory, and neuroprotective properties in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). However, little is known about the exact mode of action of the serotonin metabolite and the possible interplay between the 2 Trp metabolic pathways. Prompted by the discovery that NAS neuroprotective effects in EAE are abrogated in mice lacking IDO1 expression, we investigated the NAS mode of action in neuroinflammation. We found that NAS directly binds IDO1 and acts as a positive allosteric modulator (PAM) of the IDO1 enzyme in vitro and in vivo. As a result, increased Kyn will activate the ligand-activated transcription factor aryl hydrocarbon receptor and, consequently, antiinflammatory and immunoregulatory effects. Because NAS also increased IDO1 activity in peripheral blood mononuclear cells of a significant proportion of MS patients, our data may set the basis for the development of IDO1 PAMs as first-in-class drugs in autoimmune/neuroinflammatory diseases.


Asunto(s)
Encefalomielitis Autoinmune Experimental/enzimología , Encefalomielitis Autoinmune Experimental/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/química , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Regulación Alostérica , Sitio Alostérico , Animales , Biocatálisis , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/genética , Femenino , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Quinurenina/metabolismo , Leucocitos Mononucleares/metabolismo , Masculino , Ratones Noqueados , Esclerosis Múltiple/enzimología , Esclerosis Múltiple/genética , Esclerosis Múltiple/metabolismo , Serotonina/análogos & derivados , Serotonina/química , Serotonina/metabolismo , Triptófano/metabolismo
10.
J Chromatogr A ; 1609: 460461, 2020 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-31445805

RESUMEN

α-Linolenic acid (ALA) and its most important positional isomer γ-linolenic acid (GLA), are essential fatty acids (vitamin F). Therefore, ALA- and GLA-rich edible oils hold great potential in human and animal nutrition, as well as in nutraceutics and cosmetics. Quality control and nutritional validation of oil products is thus of increasing importance. In the present study, the cellulose tris(3,5-dichlorophenylcarbamate)-based chiral stationary phase was successfully used for separation of ALA and GLA, a major challenge in the liquid chromatography of these isomers. The chromatographic conditions were firstly optimized on a HPLC system with UV detection, and the use of a reversed-phase eluent system made up of aqueous 10 mM ammonium acetate/acetonitrile (40/60, v/v; wspH6.0) with a 25 °C column temperature resulted optimal for the simultaneous discrimination of the two isomers at a 0.5 mL/min flow rate (α = 1.10; RS = 1.21). The method was then optimized for LC-MS/MS implementation. The proposed innovative separation method holds a great potential for the quantification of ALA and GLA in food and biological matrices, thus opening the way to further investigations involving the two positional isomers.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Ácido alfa-Linolénico/aislamiento & purificación , Ácido gammalinolénico/aislamiento & purificación , Celulosa/análogos & derivados , Celulosa/química , Cromatografía Líquida de Alta Presión/instrumentación , Humanos , Isomerismo , Fenilcarbamatos/química , Espectrometría de Masas en Tándem , Temperatura , Ácido alfa-Linolénico/química , Ácido gammalinolénico/química
11.
ChemMedChem ; 14(24): 2084-2092, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31724832

RESUMEN

Indoleamine 2,3-dioxygenase 1 (IDO1) catalyzes the oxidative cleavage of l-Tryptophan (l-Trp) to yield N-formyl-kynurenine in the first and rate limiting step of the kynurenine pathway. Bioactive metabolites, involved in the regulation of important immunological responses and neurological processes, are then produced by downstream enzymes along the pathway. Inhibitors of IDO1 are being designed and developed as therapeutic agents for immuno-oncology. In this work, we investigated the molecular recognition path of l-Trp to IDO1, integrating biophysical methods with supervised molecular dynamics (suMD) and mutagenesis experiments. Results allowed disclosing for the first time high and low dissociation constants of l-Trp to IDO1, and the presence of a metastable interaction site located at the upper part of a channel whose borders are defined by the EF-loop and the C-terminal part of the JK-loop. Collectively, our results provide new clues for the design of next-generation IDO1 ligands.


Asunto(s)
Indolamina-Pirrol 2,3,-Dioxigenasa/química , Simulación de Dinámica Molecular , Triptófano/química , Sitios de Unión , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Estructura Molecular , Triptófano/metabolismo
12.
Eur J Med Chem ; 141: 169-177, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29031064

RESUMEN

Indoleamine 2,3-dioxygenase 1 (IDO1) is attracting a great deal of interest as drug target in immune-oncology being highly expressed in cancer cells and participating to the tumor immune-editing process. Although several classes of IDO1 inhibitors have been reported in literature and patent applications, only few compounds have proved optimal pharmacological profile in preclinical studies to be advanced in clinical trials. Accordingly, the quest for novel structural classes of IDO1 inhibitors is still open. In this paper, we report a fragment-based screening campaign that combines Water-LOGSY NMR experiments and microscale thermophoresis approach to identify fragments that may be helpful for the development of novel IDO1 inhibitors as therapeutic agents in immune-oncology disorders.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Quinurenina/farmacología , Línea Celular , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Quinurenina/síntesis química , Quinurenina/química , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad
13.
Future Med Chem ; 9(12): 1327-1338, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28771024

RESUMEN

AIM: Inhibition of IDO1 is a strategy pursued in the immune-oncology pipeline for the development of novel anticancer therapies. At odds with an ever-increasing number of inhibitors being disclosed in the literature and patent applications, only very few compounds have hitherto advanced in clinical settings. MATERIALS & METHODS: We have used MicroScale Thermophoresis analysis and docking calculations to assess on a quantitative basis the binding properties of distinct categories of inhibitors to IDO1. RESULTS: Results shed further light on hidden molecular aspects governing the recognition by the enzyme of compounds with different mechanism of inhibition. CONCLUSION: Results pinpoint specific binding features of distinct inhibitors to IDO1 that offer clues for the design of next-generation inhibitors of the enzyme.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Temperatura , Sitios de Unión/efectos de los fármacos , Inhibidores Enzimáticos/química , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad
14.
Medchemcomm ; 8(7): 1378-1392, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30108849

RESUMEN

Indoleamine 2,3-dioxygenase 1 (IDO1) mediates multiple immunoregulatory processes including the induction of regulatory T cell differentiation and activation, suppression of T cell immune responses and inhibition of dendritic cell function, which impair immune recognition of cancer cells and promote tumor growth. On this basis, this enzyme is widely recognized as a valuable drug target for the development of immunotherapeutic small molecules in oncology. Although medicinal chemistry has made a substantial contribution to the discovery of numerous chemical classes of potent IDO1 inhibitors in the past 20 years, only very few compounds have progressed in clinical trials. In this review, we provide an overview of the current understanding of structure-function relationships of the enzyme, and discuss structure-activity relationships of selected classes of inhibitors that have shaped the hitherto few successes of IDO1 medicinal chemistry. An outlook opinion is also given on trends in the design of next generation inhibitors of the enzyme.

15.
Mol Inform ; 35(8-9): 449-59, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27546049

RESUMEN

In the last decade, indoleamine 2,3-dioxygenase 1 (IDO1) has attracted a great deal of attention being recognized as key regulator of immunosuppressive pathways in the tumor immuno-editing process. Several classes of inhibitors have been developed as potential anticancer agents, but only few of them have advanced in clinical trials. Hence, the quest of novel potent and selective inhibitors of the enzyme is still active and mostly pursued by structure-based drug design strategies based on early and more recent crystal structures of IDO1. Combining docking studies and molecular dynamic simulations, in this work we have comparatively investigated the structural features of each crystal structure of IDO1. The results pinpoint different features in specific crystal structures of the enzyme that may benefit the medicinal chemistry arena aiding the design of novel potent and selective inhibitors of IDO1.


Asunto(s)
Indolamina-Pirrol 2,3,-Dioxigenasa/química , Diseño de Fármacos , Descubrimiento de Drogas/métodos , Inhibidores Enzimáticos/química , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Simulación del Acoplamiento Molecular/métodos , Simulación de Dinámica Molecular , Relación Estructura-Actividad
16.
Future Med Chem ; 8(1): 39-54, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26692277

RESUMEN

Inhibition of IDO1 is a strategy pursued to develop novel therapeutic treatments for cancer. Recent years have witnessed growing evidence that the enzyme plays a pivotal role in viral, bacterial and fungal infections. These studies have underscored the Janus-faced nature of IDO1 in the regulation of host-pathogen interactions and commensalism. Starting with an outlook on the advances in the structural features of IDO1, herein we report recent findings that pinpoint the involvement of IDO1 in infectious diseases. Then, we present an overview of IDO1 inhibitors that have been enrolled in clinical trials as well as other distinct modulators of the enzyme that may enable further investigations of IDO1 and its role in infectious disease.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Antivirales/farmacología , Enfermedades Transmisibles/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Antibacterianos/síntesis química , Antibacterianos/química , Antifúngicos/síntesis química , Antifúngicos/química , Antivirales/síntesis química , Antivirales/química , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Interacciones Huésped-Patógeno , Humanos , Estructura Molecular , Relación Estructura-Actividad
17.
Cancer Res ; 75(21): 4560-72, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26359458

RESUMEN

Restoration of wild-type p53 tumor suppressor function has emerged as an attractive anticancer strategy. Therapeutics targeting the two p53-negative regulators, MDM2 and MDM4, have been developed, but most agents selectively target the ability of only one of these molecules to interact with p53, leaving the other free to operate. Therefore, we developed a method that targets the activity of MDM2 and MDM4 simultaneously based on recent studies indicating that formation of MDM2/MDM4 heterodimer complexes are required for efficient inactivation of p53 function. Using computational and mutagenesis analyses of the heterodimer binding interface, we identified a peptide that mimics the MDM4 C-terminus, competes with endogenous MDM4 for MDM2 binding, and activates p53 function. This peptide induces p53-dependent apoptosis in vitro and reduces tumor growth in vivo. Interestingly, interfering with the MDM2/MDM4 heterodimer specifically activates a p53-dependent oxidative stress response. Consistently, distinct subcellular pools of MDM2/MDM4 complexes were differentially sensitive to the peptide; nuclear MDM2/MDM4 complexes were particularly highly susceptible to the peptide-displacement activity. Taken together, these data identify the MDM2/MDM4 interaction interface as a valuable molecular target for therapeutic reactivation of p53 oncosuppressive function.


Asunto(s)
Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Proteínas Nucleares/metabolismo , Péptidos/uso terapéutico , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Apoptosis/fisiología , Proteínas de Ciclo Celular , Línea Celular Tumoral , Células HCT116 , Humanos , Células MCF-7 , Masculino , Ratones , Ratones Noqueados , Ratones Desnudos , Estrés Oxidativo/fisiología , Unión Proteica/fisiología , Especies Reactivas de Oxígeno/metabolismo , Ubiquitinación
18.
Mol Biol Cell ; 26(13): 2418-25, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26124436

RESUMEN

Lipid microdomains localized in the inner nuclear membrane are considered platforms for active chromatin anchoring. Stimuli such as surgery, vitamin D, or glucocorticoid drugs influence their gene expression, DNA duplication, and RNA synthesis. In this study, we used ultrafast liquid chromatography-tandem mass spectrometry to identify sphingomyelin (SM) species coupled with immunoblot analysis to comprehensively map differences in nuclear lipid microdomains (NLMs) purified from hepatocytes and hepatoma cells. We showed that NLMs lost saturated very-long-chain fatty acid (FA; C24:0) SM in cancer cells and became enriched in long-chain FA (C16:0) SM. We also found that signaling proteins, such as STAT3, Raf1, and PKCζ, were increased and vitamin D receptor was reduced in cancer cells. Because recent researches showed a shift in sphingolipid composition from C24:0 to C16:0 in relation to cell life, we performed a comparative analysis of properties among C16:0 SM, C24:0 SM, and cholesterol. Our results led us to hypothesize that the enrichment of C16:0 SM could determine enhanced dynamic properties of NLMs in cancer cells with an increased shuttling of protein signaling molecules.


Asunto(s)
Hepatocitos/metabolismo , Neoplasias Hepáticas Experimentales/metabolismo , Microdominios de Membrana/metabolismo , Receptores de Calcitriol/metabolismo , Esfingomielinas/metabolismo , Animales , Colesterol/metabolismo , Ácidos Grasos/metabolismo , Femenino , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Metabolismo de los Lípidos , Masculino , Membrana Nuclear/metabolismo , Ratas , Ratas Sprague-Dawley , Esfingolípidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA