Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Transl Med ; 22(1): 574, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886736

RESUMEN

BACKGROUND: The innate immunity acts during the early phases of infection and its failure in response to a multilayer network of co-infections is cause of immune system dysregulation. Epidemiological SARS-CoV-2 infections data, show that Influenza Virus (FLU-A-B-C) and Respiratory Syncytial Virus (RSV) are co-habiting those respiratory traits. These viruses, especially in children (mostly affected by 'multi-system inflammatory syndrome in children' [MIS-C] and the winter pandemic FLU), in the aged population, and in 'fragile' patients are causing alteration in immune response. Then, bacterial and fungal pathogens are also co-habiting the upper respiratory traits (e.g., Staphylococcus aureus and Candida albicans), thus contributing to morbidity in those COVID-19 affected patients. METHODS: Liquid chromatography coupled with high-resolution mass spectrometry using the quadrupole orbital ion trap analyser (i.e., UHPLC-Q-Orbitrap HRMS) was adopted to measure the polyphenols content of a new nutraceutical formula (Solution-3). Viral infections with SARS-CoV-2 (EG.5), FLU-A and RSV-A viruses (as performed in BLS3 authorised laboratory) and real time RT-PCR (qPCR) assay were used to test the antiviral action of the nutraceutical formula. Dilution susceptibility tests have been used to estimate the minimum inhibitory and bactericidal concentration (MIC and MBC, respectively) of Solution-3 on a variety of microorganisms belonging to Gram positive/ negative bacteria and fungi. Transcriptomic data analyses and functional genomics (i.e., RNAseq and data mining), coupled to qPCR and ELISA assays have been used to investigate the mechanisms of action of the nutraceutical formula on those processes involved in innate immune response. RESULTS: Here, we have tested the combination of natural products containing higher amounts of polyphenols (i.e., propolis, Verbascum thapsus L., and Thymus vulgaris L.), together with the inorganic long chain polyphosphates 'polyPs' with antiviral, antibacterial, and antifungal behaviours, against SARS-CoV-2, FLU-A, RSV-A, Gram positive/ negative bacteria and fungi (i.e., Candida albicans). These components synergistically exert an immunomodulatory action by enhancing those processes involved in innate immune response (e.g., cytokines: IFNγ, TNFα, IL-10, IL-6/12; chemokines: CXCL1; antimicrobial peptides: HBD-2, LL-37; complement system: C3). CONCLUSION: The prophylactic antimicrobial success of this nutraceutical formula against SARS-CoV-2, FLU-A and RSV-A viruses, together with the common bacteria and fungi co-infections as present in human oral cavity, is expected to be valuable.


Asunto(s)
Antivirales , COVID-19 , Inmunidad Innata , SARS-CoV-2 , Humanos , Inmunidad Innata/efectos de los fármacos , Antivirales/farmacología , COVID-19/inmunología , COVID-19/virología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/inmunología , Antiinfecciosos/farmacología , Polifenoles/farmacología , Suplementos Dietéticos
2.
Front Microbiol ; 15: 1383027, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711969

RESUMEN

The improper use and abuse of antibiotics have led to an increase in multidrug-resistant (MDR) bacteria resulting in a failure of standard antibiotic therapies. To date, this phenomenon represents a leading public health threat of the 21st century which requires alternative strategies to fight infections such as the identification of new molecules active against MDR strains. In the last 20 years, natural extracts with biological activities attracted scientific interest. Following the One Health Approach, natural by-products represent a sustainable and promising alternative solution. Consistently, the aim of the present study was to evaluate the antimicrobial activity of hydro-alcoholic pomegranate peel extract (PPE) against MDR microorganisms belonging to Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. "ESKAPE" group pathogens. Through semiquantitative and quantitative methods, the PPE showed effective antimicrobial activity against Gram-positive and Gram-negative MDR bacteria. The kinetics of bactericidal action of PPE highlighted that microbial death was achieved in a time- and dose-dependent manner. High concentrations of PPE exhibited antioxidant activity, providing a protective effect on cellular systems and red blood cell membranes. Finally, we report, for the first time, a significant intracellular antibacterial property of PPE as highlighted by its bactericidal action against the staphylococcal reference strain and its bacteriostatic effect against clinical resistant strain in the HeLa cell line. In conclusion, due to its characterized content of polyphenolic compounds and antioxidant activity strength, the PPE could be considered as a therapeutic agent alone or in conjunction with standard antibiotics against challenging infections caused by ESKAPE pathogens.

3.
BioTech (Basel) ; 13(2)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38804294

RESUMEN

Bioaerosols and pathogens in indoor workplaces and residential environments are the primary culprits of several infections. Techniques for sanitizing air and surfaces typically involve the use of UV rays or chemical sanitizers, which may release chemical residues harmful to human health. Essential oils, natural substances derived from plants, which exhibit broad antimicrobial properties, could be a viable alternative for air and surface sanitation. The objective of this study has been to investigate the efficacy of thyme essential oil (TEO) in environmental sanitation processes. In Vitro assays through agar well diffusion, disk volatilization and tube dilution methods revealed significant antimicrobial activity of TEO 100% against foodborne and environmental isolates, with both bacteriostatic/fungistatic and bactericidal/fungicidal effects. Therefore, aqueous solutions of TEO 2.5% and 5% were formulated for air sanitation through nebulization and surface disinfection via direct contact. Bioaerosol samples and surface swabs were analyzed before and after sanitation, demonstrating the efficacy of aqueous solutions of TEO in reducing mesophilic and psychrophilic bacteria and environmental fungi levels in both air and on surfaces. The obtained results prove the antimicrobial potential of aqueous solutions of TEO in improving indoor air quality and surface cleanliness, suggesting thyme essential oil as an effective and safe natural sanitizer with minimal environmental impact compared to dangerous chemical disinfectants.

4.
Microorganisms ; 12(3)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38543488

RESUMEN

Grape pomace is the main by-product of vine-winery chains. It requires adequate treatment and disposal but is also an economically underused source of bioactive plant secondary metabolites. This study aimed to investigate the antibacterial effects of polyphenolic extracts from Aglianico (Vitis vinifera L.) grape pomace. In particular, hydroethanolic extracts obtained via an ultrasonic-assisted extraction technique were selected for antimicrobial tests. The extracts were screened for their antibacterial effects against foodborne pathogens that were both Gram-positive, in the case of Staphylococcus aureus and Bacillus cereus, and Gram-negative, in the case of Escherichia coli and Salmonella enterica subsp. enterica serovar Typhimurium, showing variable bacteriostatic and bactericidal effects. In addition, our results demonstrated that the tested grape pomace extracts can reduce the inhibitory concentration of standard antibiotics. Interestingly, selected extracts inhibited biofilm development by S. aureus and B. cereus. Overall, these new insights into the antibacterial properties of grape pomace extracts may represent a relevant step in the design of novel therapeutic tools to tackle foodborne diseases, and in the management of resistant biofilm-related infections.

5.
Angew Chem Int Ed Engl ; 63(17): e202401541, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38393988

RESUMEN

Veillonella parvula, prototypical member of the oral and gut microbiota, is at times commensal yet also potentially pathogenic. The definition of the molecular basis tailoring this contrasting behavior is key for broadening our understanding of the microbiota-driven pathogenic and/or tolerogenic mechanisms that take place within our body. In this study, we focused on the chemistry of the main constituent of the outer membrane of V. parvula, the lipopolysaccharide (LPS). LPS molecules indeed elicit pro-inflammatory and immunomodulatory responses depending on their chemical structures. Herein we report the structural elucidation of the LPS from two strains of V. parvula and show important and unprecedented differences in both the lipid and carbohydrate moieties, including the identification of a novel galactofuranose and mannitol-containing O-antigen repeating unit for one of the two strains. Furthermore, by harnessing computational studies, in vitro human cell models, as well as lectin binding solid-phase assays, we discovered that the two chemically diverse LPS immunologically behave differently and have attempted to identify the molecular determinant(s) governing this phenomenon. Whereas pro-inflammatory potential has been evidenced for the lipid A moiety, by contrast a plausible "immune modulating" action has been proposed for the peculiar O-antigen portion.


Asunto(s)
Lipopolisacáridos , Antígenos O , Humanos , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Antígenos O/metabolismo , Veillonella/metabolismo , Lípido A
6.
Chembiochem ; 24(10): e202300183, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37042436

RESUMEN

Marine bacteria, which are often described as chemical gold, are considered an exceptional source of new therapeutics. Considerable research interest has been given to lipopolysaccharides (LPSs), the main components of the Gram-negative outer membrane. LPS and its lipid A portion from marine bacteria are known to exhibit a tricky chemistry that has been often associated with intriguing properties such as behaving as immune adjuvants or anti-sepsis molecules. In this scenario, we report the structural determination of the lipid A from three marine bacteria within the Cellulophaga genus, which showed to produce an extremely heterogenous blend of tetra- to hexa-acylated lipid A species, mostly carrying one phosphate and one D-mannose on the glucosamine disaccharide backbone. The ability of the three LPSs in activating TLR4 signaling revealed a weaker immunopotential by C. baltica NNO 15840T and C. tyrosinoxydans EM41T , while C. algicola ACAM 630T behaved as a more potent TLR4 activator.


Asunto(s)
Flavobacteriaceae , Gammaproteobacteria , Lípido A/química , Receptor Toll-Like 4 , Lipopolisacáridos/química
7.
Antibiotics (Basel) ; 12(3)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36978352

RESUMEN

Nowadays, the wide spread of foodborne illness and the growing concerns about the use of synthetic food additives have shifted the focus of researchers towards essential oils (EOs) as possible antimicrobials and preservatives of natural origin. Thanks to their antimicrobial properties against pathogenic and food spoilage microorganisms, EOs have shown good potential for use as alternative food additives, also to counteract biofilm-forming bacterial strains, the spread of which is considered to be among the main causes of the increase in foodborne illness outbreaks. In this context, the aim of this study has been to define the antibacterial and antibiofilm profile of thyme (Thymus vulgaris L.) essential oil (TEO) against widespread foodborne pathogens, Salmonella enterica subsp. enterica serovar Typhimurium and Bacillus cereus. TEO chemical composition was analyzed through gas chromatography-mass spectrometry (GC-MS). Preliminary in vitro antibacterial tests allowed to qualitatively verify TEO efficacy against the tested foodborne pathogens. The subsequent determination of minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values allowed to quantitatively define the bacteriostatic and bactericidal effects of TEO. To evaluate the ability of essential oils to inhibit biofilm formation, a microplate assay was performed for the bacterial biofilm biomass measurement. Results suggest that TEO, rich in bioactive compounds, is able to inhibit the growth of tested foodborne bacteria. In addition, the highlighted in vitro anti-biofilm properties of TEO suggest the use of this natural agent as a promising food preservative to counteract biofilm-related infections in the food industry.

8.
Microorganisms ; 10(12)2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36557699

RESUMEN

Foodborne diseases continue to represent an important public health issue. The control of food spoilage and pathogenic microorganisms is achieved mainly by synthetic chemicals, unfortunately associated to several undesirable aspects. The growing requirement for new and safe alternative strategies has resulted in the research of agents from natural sources with antimicrobial properties, such as essential oils (EOs). This study's purpose was to define the antibacterial profile of thyme (Thymus vulgaris) and cloves (Syzygium aromaticum) essential oils against both Gram-positive and Gram-negative important foodborne pathogenic bacteria. Gas chromatography mass spectrometry analysis was performed for EOs' chemical composition. Qualitative in vitro antimicrobial assays (i.e., agar well diffusion method and disk-volatilization method) allowed for verification of the efficacy of EOs, used individually and in binary combination and both in liquid and vapor phase, against Staphylococcus aureus and Escherichia coli food isolates. Minimal inhibitory concentrations and minimal bactericidal concentration values have been used to quantitatively measure the antibacterial activity of EOs, while the fractional inhibitory concentration index has been considered as a predictor of in vitro antibacterial synergistic effects. The microbiological tests suggest that thyme and cloves EOs, rich in bioactive compounds, are able to inhibit the growth of tested foodborne bacteria, especially in vapor phase, also with synergistic effects. Results provide evidence to consider the tested essential oils as promising sources for development of new, broad-spectrum, green food preservatives.

10.
Diagnostics (Basel) ; 12(8)2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35892509

RESUMEN

This study provides updated information on the prevalence and co-infections caused by genital microorganisms and pathogens: Mycoplasma genitalium, Mycoplasma hominis, Ureaplasma parvum, Ureaplasma urealyticum, Trichomonas vaginalis, and Gardnerella vaginalis, by retrospectively analyzing a cohort of patients living in the Naples metropolitan area, Campania region, Southern Italy. To investigate the genital infections prevalence in clinical specimens (vaginal/endocervical swabs and urines) collected from infertile asymptomatic women and men from November 2018 to December 2020, we used a multiplex real-time PCR assay. Of the 717 specimens collected, 302 (42.1%) resulted positive for at least one of the targets named above. Statistically significant differences in genital prevalence of selected microorganisms were detected in both women (62.91%) and men (37.08%). G. vaginalis and U. parvum represented the most common findings with an 80.2% and 16.9% prevalence in vaginal/endocervical swabs and first-voided urines, respectively. Prevalence of multiple infections was 18.18% and 8.19% in women and men, respectively. The most frequent association detected was the co-infection of G. vaginalis and U. parvum with 60% prevalence. Our epidemiological analysis suggests different infection patterns between genders, highlighting the need to implement a preventative screening strategy of genital infections to reduce the complications on reproductive organs.

11.
Gels ; 8(2)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35200468

RESUMEN

Hand hygiene, social distancing, and face covering are considered the first protection against Coronavirus spreading. The high demand during the COVID-19 emergency has driven a frenetic production and marketing of hand sanitizer gels. Nevertheless, the effect of the gelling agent and its amount on the effectiveness of alcohol-based hand sanitizers (ABHSs) needs to be clarified. We presented a systematic study on the effect of the characteristics and concentration of the most employed excipients on the properties and antimicrobial activity of ABHSs. Three different gelling agents, carbopol, hydroxypropylmethylcellulose (HPMC), and hydroxyethylcellulose (HEC), at four different concentrations were used to prepare ABHSs. Viscosity, spreadability, delivery from commercial dispensers, evaporation rate, rubbing time, and hand distribution of the ABHSs were then explored. Biocidal activity of selected ABHSs was evaluated in vitro on ATCC and clinical strains. The studied ABHS can be considered bioactive and comfortable. Nevertheless, the cellulose polymers and ethanol interactions led to a slight but significant reduction in the biocidal activity compared with carbopol-based formulations. Our results underline the importance of the gelling agent properties and support the choice of carbopol as one of the best thickener agents in ABHS formulations.

12.
Microorganisms ; 9(12)2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34946153

RESUMEN

Gram-negative bacteria experiencing marine habitats are constantly exposed to stressful conditions dictating their survival and proliferation. In response to these selective pressures, marine microorganisms adapt their membrane system to ensure protection and dynamicity in order to face the highly mutable sea environments. As an integral part of the Gram-negative outer membrane, structural modifications are commonly observed in the lipopolysaccharide (LPS) molecule; these mainly involve its glycolipid portion, i.e., the lipid A, mostly with regard to fatty acid content, to counterbalance the alterations caused by chemical and physical agents. As a consequence, unusual structural chemical features are frequently encountered in the lipid A of marine bacteria. By a combination of data attained from chemical, MALDI-TOF mass spectrometry (MS), and MS/MS analyses, here, we describe the structural characterization of the lipid A isolated from two marine bacteria of the Echinicola genus, i.e., E. pacifica KMM 6172T and E. vietnamensis KMM 6221T. This study showed for both strains a complex blend of mono-phosphorylated tri- and tetra-acylated lipid A species carrying an additional sugar moiety, a d-galacturonic acid, on the glucosamine backbone. The unusual chemical structures are reflected in a molecule that only scantly activates the immune response upon its binding to the LPS innate immunity receptor, the TLR4-MD-2 complex. Strikingly, both LPS potently inhibited the toxic effects of proinflammatory Salmonella LPS on human TLR4/MD-2.

13.
FASEB J ; 35(12): e22026, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34818435

RESUMEN

Antibiotic resistance is becoming a severe obstacle in the fight against acute and chronic infectious diseases that accompany most degenerative illnesses from neoplasia to osteo-arthritis and obesity. Currently, the race is on to identify pharmaceutical molecules or combinations of molecules able to prevent or reduce the insurgence and/or progression of infectivity. Attempts to substitute antibiotics with antimicrobial peptides have, thus far, met with little success against multidrug-resistant (MDR) bacterial strains. During the last decade, we designed and studied the activity and features of human ß-defensin analogs, which are salt-resistant, and hence active also under high salt concentrations as, for instance, in cystic fibrosis. Herein, we describe the design, synthesis, and major features of a new 21 aa long molecule, peptide γ2. The latter derives from the γ-core of the ß-defensin natural molecules, a small fragment of these molecules still bearing high antibacterial activity. We found that peptide γ2, which contains only one disulphide bond, recapitulates most of the biological properties of natural human ß-defensins and can also counteract both Gram-positive and Gram-negative MDR bacterial strains and biofilm formation. Moreover, it has great stability in human serum thereby enhancing its antibacterial presence and activity without cytotoxicity in human cells. In conclusion, peptide γ2 is a promising new weapon also in the battle against intractable infectious diseases.


Asunto(s)
Antibacterianos/farmacología , Péptidos Antimicrobianos/farmacología , Bacterias/crecimiento & desarrollo , Biopelículas/crecimiento & desarrollo , beta-Defensinas/química , Bacterias/efectos de los fármacos , Biopelículas/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple , Humanos , Pruebas de Sensibilidad Microbiana
14.
BMC Infect Dis ; 21(1): 350, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33853532

RESUMEN

BACKGROUND: The SARS-CoV-2 infection has emerged as a rapidly spreading infection. Today it is relatively easy to isolate Covid-19 symptomatic cases, while remains problematic to control the disease spread by infected but symptom-free individuals. The control of this possible path of contagion requires drastic measures of social distancing, which imply the suspension of most activities and generate economic and social issues. This study is aimed at estimating the percentage of asymptomatic SARS-CoV-2 infection in a geographic area with relatively low incidence of Covid-19. METHODS: Blood serum samples from 388 healthy volunteers were analyzed for the presence of anti-SARS-CoV-2 IgG by using an ELISA assay based on recombinant viral nucleocapsid protein. RESULTS: We found that 7 out of 388 healthy volunteers, who declared no symptoms of Covid-19, like fever, cough, fatigue etc., in the preceding 5 months, have bona fide serum anti-SARS-CoV-2 IgG, that is 1.8% of the asymptomatic population (95% confidence interval: 0.69-2.91%). CONCLUSIONS: The estimated range of asymptomatic individuals with anti-SARS-CoV-2 IgG should be between 26,565 and 112, 350. In the same geographic area, there are 4665 symptomatic diagnosed cases.


Asunto(s)
Anticuerpos Antivirales/sangre , Infecciones Asintomáticas , COVID-19/epidemiología , Adulto , Anciano , Humanos , Inmunoglobulina G/sangre , Incidencia , Italia/epidemiología , Persona de Mediana Edad , Adulto Joven
15.
Genes (Basel) ; 12(5)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33925640

RESUMEN

Fifteen percent of male infertility is associated with urogenital infections; several pathogens are able to alter the testicular and accessory glands' microenvironment, resulting in the impairment of biofunctional sperm parameters. The purpose of this study was to assess the influence of urogenital infections on the quality of 53 human semen samples through standard analysis, microbiological evaluation, and molecular characterization of sperm DNA damage. The results showed a significant correlation between infected status and semen volume, sperm concentration, and motility. Moreover, a high risk of fragmented sperm DNA was demonstrated in the altered semen samples. Urogenital infections are often asymptomatic and thus an in-depth evaluation of the seminal sample can allow for both the diagnosis and therapy of infections while providing more indicators for male infertility management.


Asunto(s)
Fertilidad/genética , Fertilidad/fisiología , Semen/fisiología , Espermatozoides/fisiología , Adulto , Daño del ADN/genética , Fragmentación del ADN , Humanos , Infertilidad Masculina/genética , Masculino , Análisis de Semen/métodos , Recuento de Espermatozoides/métodos , Motilidad Espermática/genética , Motilidad Espermática/fisiología
16.
Artículo en Inglés | MEDLINE | ID: mdl-33557403

RESUMEN

The first wave of the COVID-19 pandemic brought about a broader use of masks by both professionals and the general population. This resulted in a severe worldwide shortage of devices and the need to increase import and activate production of safe and effective surgical masks at the national level. In order to support the demand for testing surgical masks in the Italian context, Universities provided their contribution by setting up laboratories for testing mask performance before releasing products into the national market. This paper reports the effort of seven Italian university laboratories who set up facilities for testing face masks during the emergency period of the COVID-19 pandemic. Measurement set-ups were built, adapting the methods specified in the EN 14683:2019+AC. Data on differential pressure (DP) and bacterial filtration efficiency (BFE) of 120 masks, including different materials and designs, were collected over three months. More than 60% of the masks satisfied requirements for DP and BFE set by the standard. Masks made of nonwoven polypropylene with at least three layers (spunbonded-meltblown-spunbonded) showed the best results, ensuring both good breathability and high filtration efficiency. The majority of the masks created with alternative materials and designs did not comply with both standard requirements, resulting in suitability only as community masks. The effective partnering between universities and industries to meet a public need in an emergency context represented a fruitful example of the so-called university "third-mission".


Asunto(s)
COVID-19/prevención & control , Laboratorios , Máscaras/normas , Pandemias , Humanos , Italia
17.
Front Microbiol ; 11: 592265, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33224129

RESUMEN

In the last decades, resistant microbial infection rate has dramatically increased, especially infections due to biofilm-producing strains that require increasingly complex treatments and are responsible for the increased mortality percentages compared with other infectious diseases. Considering that biofilms represent a key factor for a wide range of chronic infections with high drug tolerance, the treatment of biofilm-causing bacterial infections represents a great challenge for the future. Among new alternative strategies to conventional antimicrobial agents, the scientific interest has shifted to the study of biologically active compounds from plant-related extracts with known antimicrobial properties, in order to also evaluate their antibiofilm activity. In this regard, the aim of this study has been to assess the antibiofilm activity of polyphenolic extracts from myrtle leaf and pomegranate peel against oral pathogens of dental plaque, an excellent polymicrobial biofilm model. In particular, the in vitro antibiofilm properties of myrtle and pomegranate extracts, also in binary combination, were highlighted. In addition to inhibiting the biofilm formation, the tested polyphenolic extracts have been proven to destroy both preformed single-species and multispecies biofilms formed by Streptococcus mutans, Streptococcus oralis, Streptococcus mitis, and Rothia dentocariosa oral isolates, suggesting that the new natural sources are rich in promising compounds able to counteract biofilm-related infections.

18.
J Clin Med ; 9(9)2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32971735

RESUMEN

The benefits of thermal water in different diseases have been known since ancient times. Over the past decades, a re-assessment of the use of mineral water for the treatment of several pathologic conditions has taken place around the world. Today, water therapy is being practiced in many countries that have a variety of mineral springs considerably different in their hydrogeologic origin, temperature, and chemical composition. Thermal water and balneotherapy offer several advantages: this approach needs no chemicals or potentially harmful drugs; there are almost no side effects during and after treatment, and there is a low risk to the patient's general health and well-being. However, it is difficult to evaluate the efficacy of this therapeutic approach in clinical practice due to the complexity of molecular mechanisms underlying its efficacy. Here we review the current knowledge of the chemical, immunological, and microbiological basis for therapeutic effects of thermal water with a specific focus on chronic inflammatory skin diseases. We also describe recent evidence of the major dermatologic diseases that are frequently treated by balneotherapy with a remarkable rate of success. Moreover, we discuss the potential role of balneotherapy either alone or as a complement to conventional medical treatments.

19.
Front Microbiol ; 11: 1465, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849317

RESUMEN

The increasing incidence rate of oral diseases, the wide spread of antimicrobial resistance, and the adverse effects of conventional antibiotics mean alternative prevention and treatment options are needed to counteract oral pathogens. In this regard, our study aims to evaluate the antibacterial activity of polyphenolic extracts prepared from acacia honey, myrtle leaves, and pomegranate peel against cariogenic bacteria, such as Streptococcus mutans and Rothia dentocariosa. The chemical-physical parameters of acacia honey and the RP-HPLC polyphenolic profile of pomegranate peel extract have been previously described in our studies, while the characterization of myrtle extract, performed by HPLC analysis, is reported here. All the extracts were used singly and in binary combinations to highlight any synergistic effects. Moreover, the extracts were tested in association with amoxicillin to evaluate their ability to reduce the effective dose of this drug in vitro. The values of minimal inhibitory concentrations and minimal bactericidal concentrations have been used to quantitatively measure the antibacterial activity of the single extracts, while the fractional inhibitory concentration index has been considered as predictor of in vitro anticariogenic synergistic effects. Finally, a time-kill curve method allowed for the evaluation of the bactericidal efficacy of the combined extracts. The microbiological tests suggest that acacia honey, myrtle, and pomegranate extracts are able to inhibit the cariogenic bacteria, also with synergistic effects. This study provides useful and encouraging results for the use of natural extract combinations alone or in association with antibiotics (adjuvant therapy) as a valid alternative for the prevention and treatment of oral infectious diseases.

20.
Artículo en Inglés | MEDLINE | ID: mdl-32825414

RESUMEN

Acute or intense exercise is sometimes related to infections of the urinary tract. It can also lead to incorrect hydration as well as incorrect glomerular filtration due to the presence of high-molecular-weight proteins that cause damage to the kidneys. In this context, our study lays the foundations for the use of a urine test in a team of twelve male basketball players as a means of monitoring numerous biochemical parameters, including pH, specific weight, color, appearance, presence of bacterial cells, presence of squamous cells, leukocytes, erythrocytes, proteins, glucose, ketones, bilirubin, hemoglobin, nitrite, and leukocyte esterase, to prevent and/or treat the onset of pathologies, prescribe personalized treatments for each athlete, and monitor the athletes' health status.


Asunto(s)
Baloncesto , Biomarcadores , Estado de Salud , Atletas , Biomarcadores/orina , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA