Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(41): e202308028, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37603459

RESUMEN

Double-stranded RNAs (dsRNA) possess immense potential for biomedical applications. However, their therapeutic utility is limited by low stability and poor cellular uptake. Different strategies have been explored to enhance the stability of dsRNA, including the incorporation of modified nucleotides, and the use of diverse carrier systems. Nevertheless, these have not resulted in a broadly applicable approach thereby preventing the wide-spread application of dsRNA for therapeutic purposes. Herein, we report the design of dimeric stapled peptides based on the RNA-binding protein TAV2b. These dimers are obtained via disulfide formation and mimic the natural TAV2b assembly. They bind and stabilize dsRNA in the presence of serum, protecting it from degradation. In addition, peptide binding also promotes cellular uptake of dsRNA. Importantly, peptide dimers monomerize under reducing conditions which results in a loss of RNA binding. These findings highlight the potential of peptide-based RNA binders for the stabilization and protection of dsRNA, representing an appealing strategy towards the environment-triggered release of RNA. This can broaden the applicability of dsRNA, such as short interfering RNAs (siRNA), for therapeutic applications.

2.
Eur J Nucl Med Mol Imaging ; 50(4): 996-1004, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36446951

RESUMEN

PURPOSE: Exendin, an analogue of the glucagon-like peptide 1 (GLP1), is an excellent tracer for molecular imaging of pancreatic beta cells and beta cell-derived tumours. The commonly used form, exendin-4, activates the GLP1 receptor and causes internalisation of the peptide-receptor complex. As a consequence, injection of exendin-4 can lead to adverse effects such as nausea, vomiting and hypoglycaemia and thus requires close monitoring during application. By comparison, the antagonist exendin(9-39) does not activate the receptor, but its lack of internalisation has precluded its use as a tracer. Improving the cellular uptake of exendin(9-39) could turn it into a useful alternative tracer with less side-effects than exendin-4. METHODS: We conjugated exendin-4 and exendin(9-39) to the well-known cell-penetrating peptide (CPP) penetratin. We evaluated cell binding and internalisation of the radiolabelled peptides in vitro and their biodistribution in vivo. RESULTS: Exendin-4 showed internalisation irrespective of the presence of the CPP, whereas for exendin(9-39) only the penetratin conjugate internalised. Conjugation to the CPP also enhanced the in vivo tumour uptake and retention of exendin(9-39). CONCLUSION: We demonstrate that penetratin robustly improves internalisation and tumour retention of exendin(9-39), opening new avenues for antagonist-based in vivo imaging of GLP1R.


Asunto(s)
Péptidos de Penetración Celular , Insulinoma , Neoplasias Pancreáticas , Humanos , Exenatida/metabolismo , Péptidos de Penetración Celular/farmacología , Péptidos de Penetración Celular/metabolismo , Distribución Tisular , Insulinoma/metabolismo , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/metabolismo , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Ponzoñas/farmacología , Ponzoñas/química , Ponzoñas/metabolismo
3.
Nucleic Acids Res ; 49(22): 12622-12633, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34871435

RESUMEN

The design of high-affinity, RNA-binding ligands has proven very challenging. This is due to the unique structural properties of RNA, often characterized by polar surfaces and high flexibility. In addition, the frequent lack of well-defined binding pockets complicates the development of small molecule binders. This has triggered the search for alternative scaffolds of intermediate size. Among these, peptide-derived molecules represent appealing entities as they can mimic structural features also present in RNA-binding proteins. However, the application of peptidic RNA-targeting ligands is hampered by a lack of design principles and their inherently low bio-stability. Here, the structure-based design of constrained α-helical peptides derived from the viral suppressor of RNA silencing, TAV2b, is described. We observe that the introduction of two inter-side chain crosslinks provides peptides with increased α-helicity and protease stability. One of these modified peptides (B3) shows high affinity for double-stranded RNA structures including a palindromic siRNA as well as microRNA-21 and its precursor pre-miR-21. Notably, B3 binding to pre-miR-21 inhibits Dicer processing in a biochemical assay. As a further characteristic this peptide also exhibits cellular entry. Our findings show that constrained peptides can efficiently mimic RNA-binding proteins rendering them potentially useful for the design of bioactive RNA-targeting ligands.


Asunto(s)
Péptidos/química , Interferencia de ARN , ARN Bicatenario/química , Proteínas de Unión al ARN/química , Proteínas Virales/química , Permeabilidad de la Membrana Celular , Cucumovirus , Endopeptidasa K , Humanos , Células K562 , MicroARNs/química , MicroARNs/metabolismo , Imitación Molecular , Péptidos/metabolismo , Precursores del ARN/química , Precursores del ARN/metabolismo , ARN Bicatenario/metabolismo , ARN Interferente Pequeño/química , ARN Interferente Pequeño/metabolismo
4.
Pharmaceuticals (Basel) ; 14(7)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201507

RESUMEN

Nanobodies are well-established targeting ligands for molecular imaging and therapy. Their short circulation time enables early imaging and reduces systemic radiation exposure. However, shorter circulation time leads to lower tracer accumulation in the target tissue. Cell-penetrating peptides (CPPs) improve cellular uptake of various cargoes, including nanobodies. CPPs could enhance tissue retention without compromising rapid clearance. However, systematic investigations on how the functionalities of nanobody and CPP combine with each other at the level of 2D and 3D cell cultures and in vivo are lacking. Here, we demonstrate that conjugates of the epidermal growth factor receptor (EGFR)-binding nanobody 7D12 with different CPPs (nonaarginine, penetratin, Tat and hLF) differ with respect to cell binding and induction of endocytosis. For nonaarginine and penetratin we compared the competition of EGF binding and performance of L- and D-peptide stereoisomers, and tested the D-peptide conjugates in tumor cell spheroids and in vivo. The D-peptide conjugates showed better penetration into spheroids than the unconjugated 7D12. Both in vivo and in vitro, the behavior of the agent reflects the combination of both functionalities. Although CPPs cause promising increases in in vitro uptake and 3D penetration, the dominant effect of the CPP in the control of biodistribution warrants further investigation.

5.
Cancers (Basel) ; 13(3)2021 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-33498707

RESUMEN

Variable domains of heavy chain only antibodies (VHHs) are valuable agents for application in tumor theranostics upon conjugation to both a diagnostic probe and a therapeutic compound. Here, we optimized site-specific conjugation of the chelator DTPA and the photosensitizer IRDye700DX to anti-epidermal growth factor receptor (EGFR) VHH 7D12, for applications in nuclear imaging and photodynamic therapy. 7D12 was site-specifically equipped with bimodal probe DTPA-tetrazine-IRDye700DX using the dichlorotetrazine conjugation platform. Binding, internalization and light-induced toxicity of DTPA-IRDye700DX-7D12 were determined using EGFR-overexpressing A431 cells. Finally, ex vivo biodistribution of DTPA-IRDye700DX-7D12 in A431 tumor-bearing mice was performed, and tumor homing was visualized with SPECT and fluorescence imaging. DTPA-IRDye700DX-7D12 was retrieved with a protein recovery of 43%, and a degree of labeling of 0.56. Spectral properties of the IRDye700DX were retained upon conjugation. 111In-labeled DTPA-IRDye700DX-7D12 bound specifically to A431 cells, and they were effectively killed upon illumination. DTPA-IRDye700DX-7D12 homed to A431 xenografts in vivo, and this could be visualized with both SPECT and fluorescence imaging. In conclusion, the dichlorotetrazine platform offers a feasible method for site-specific dual-labeling of VHH 7D12, retaining binding affinity and therapeutic efficacy. The flexibility of the described approach makes it easy to vary the nature of the probes for other combinations of diagnostic and therapeutic compounds.

6.
Trends Immunol ; 39(5): 380-392, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29478771

RESUMEN

Lipid droplets (LDs) were initially described as fat storage organelles in adipocytes, but are increasingly recognized as dynamic players in lipid metabolism, with important roles not only in diseases such as diabetes and cancer, but also in immune regulation. Alterations in immune cell function, such as myeloid cell activation, are connected to profound changes in LD numbers and LD protein composition. Thus, these organelles appear to be essential to metabolically support immune responses, and have a vital role in antigen crosspresentation, interferon (IFN) responses, production of inflammatory mediators, and pathogen clearance. Here, we review recent studies that report on the role of LDs in the modulation of immune cell function, primarily focusing on myeloid cells, such as macrophages and dendritic cells (DCs).


Asunto(s)
Factores Inmunológicos/inmunología , Gotas Lipídicas/inmunología , Células Mieloides/inmunología , Animales , Presentación de Antígeno/inmunología , Humanos , Inflamación/inmunología , Interferones/inmunología
7.
Bioorg Med Chem ; 26(10): 2780-2787, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29157727

RESUMEN

About 25years ago it was demonstrated that certain peptides possess the ability to cross the plasma membrane. This led to the development of cell-penetrating peptides (CPPs) as vectors to mediate the cellular entry of (macro-)molecules that do not show cell entry by themselves. Nonetheless, in spite of an early bloom of promising pre-clinical studies, not a single CPP-based drug has been approved, yet. It is a paradigm in CPP research that the peptides are taken up by virtually all cells. In exploratory research and early preclinical development, this assumption guides the choice of the therapeutic target. However, while this indiscriminatory uptake may be the case for tissue culture experiments, in an organism this is clearly not the case. Biodistribution analyses demonstrate that CPPs only target a very limited number of cells and many tissues are hardly reached at all. Here, we review biodistribution analyses of CPPs and CPP-based drug delivery systems. Based on this analysis we propose a paradigm change towards a more opportunistic approach in CPP research. The application of CPPs should focus on those pathophysiologies for which the relevant target cells have been shown to be reached in vivo.


Asunto(s)
Péptidos de Penetración Celular/farmacocinética , Sistemas de Liberación de Medicamentos , Animales , Transporte Biológico , Membrana Celular/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Humanos , Distribución Tisular
8.
Immunol Cell Biol ; 95(4): 408-415, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27874015

RESUMEN

Sialic acid sugars cover the surface of dendritic cells (DCs) and have been suggested to impact several aspects of DC biology. Research into the role of sialic acids in DCs, however, is complicated by the limited number of tools available to modulate sialic acid expression. Here we report on a synthetic, fluorinated sialic acid mimetic, Ac53FaxNeu5Ac, which potently blocks sialic acid expression in human monocyte-derived DCs (moDCs). Sialic acid blockade enhanced the responsiveness of moDCs to Toll-like receptor (TLR) stimulation as measured by increased maturation marker expression and cytokine production. Consequently, the T-cell activation capacity of Ac53FaxNeu5Ac-treated moDCs was strongly increased. In addition to sialic acids, moDCs also expressed the sialic acid-binding immunoglobulin-like lectins (Siglecs) -3, -5, -7, -9 and -10, immune inhibitory receptors recognizing these sialic acids. Treatment with Ac53FaxNeu5Ac abrogated putative cis and trans interactions between sialic acids and Siglec-7/-9. Together, these data indicate that sialic acids limit the activation of moDCs via the TLR pathway, potentially by interacting with Siglec-7 or Siglec-9. Metabolic sialic acid blockade with Ac53FaxNeu5Ac could therefore potentially be used to generate more potent DC-based vaccines for induction of robust anti-viral or anti-tumor immune responses.


Asunto(s)
Células Dendríticas/inmunología , Activación de Linfocitos/efectos de los fármacos , Ácido N-Acetilneuramínico/farmacología , Ácidos Siálicos/farmacología , Transducción de Señal/efectos de los fármacos , Linfocitos T/inmunología , Antígenos CD/metabolismo , Antígenos de Diferenciación/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Biomimética , Diferenciación Celular , Células Cultivadas , Citocinas/metabolismo , Células Dendríticas/efectos de los fármacos , Humanos , Lectinas/metabolismo , Lipopolisacáridos/inmunología , Prueba de Cultivo Mixto de Linfocitos , Monocitos/inmunología , Ácido N-Acetilneuramínico/análogos & derivados , Ácido N-Acetilneuramínico/antagonistas & inhibidores , Poli I-C/inmunología , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismo , Receptores Toll-Like/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA