Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Immunol ; 212(11): 1744-1753, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38629917

RESUMEN

H chain-only Igs are naturally produced in camelids and sharks. Because these Abs lack the L chain, the Ag-binding domain is half the size of a traditional Ab, allowing this type of Ig to bind to targets in novel ways. Consequently, the H chain-only single-domain Ab (sdAb) structure has the potential to increase the repertoire and functional range of an active humoral immune system. The majority of vertebrates use the standard heterodimeric (both H and L chains) structure and do not produce sdAb format Igs. To investigate if other animals are able to support sdAb development and function, transgenic chickens (Gallus gallus) were designed to produce H chain-only Abs by omitting the L chain V region and maintaining only the LC region to serve as a chaperone for Ab secretion from the cell. These birds produced 30-50% normal B cell populations within PBMCs and readily expressed chicken sequence sdAbs. Interestingly, the H chains contained a spontaneous CH1 deletion. Although no isotype switching to IgY or IgA occurred, the IgM repertoire was diverse, and immunization with a variety of protein immunogens rapidly produced high and specific serum titers. mAbs of high affinity were efficiently recovered by single B cell screening. In in vitro functional assays, the sdAbs produced by birds immunized against SARS-CoV-2 were also able to strongly neutralize and prevent viral replication. These data suggest that the truncated L chain design successfully supported sdAb development and expression in chickens.


Asunto(s)
Animales Modificados Genéticamente , Pollos , Cadenas Pesadas de Inmunoglobulina , Anticuerpos de Dominio Único , Animales , Pollos/inmunología , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/genética , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/inmunología , SARS-CoV-2/inmunología , SARS-CoV-2/genética , COVID-19/inmunología , Transgenes/genética , Linfocitos B/inmunología , Anticuerpos Antivirales/inmunología , Cadenas Ligeras de Inmunoglobulina/genética , Cadenas Ligeras de Inmunoglobulina/inmunología , Humanos
2.
Methods Mol Biol ; 1874: 403-430, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30353528

RESUMEN

The unique characteristics of the avian embryo, with its large opaque yolk, have necessitated the development of different approaches to transgenesis from those that have been successful in mammalian species. Genetic modification of birds was greatly advanced by the ability to grow long-term cultures of primordial germ cells (PGCs). These cells are obtained from embryos, established in culture, and can be propagated without losing the ability to contribute to the germline when reintroduced into a host animal. PGCs can be genetically modified in culture using traditional transfection and selection techniques, including gene targeting and site-specific nuclease approaches. Here, we describe our methods for deriving cell lines, long-term culture, genetic modification, production of germline chimeras and obtaining fully transgenic birds with the desired genetic modifications.


Asunto(s)
Animales Modificados Genéticamente/crecimiento & desarrollo , Pollos/genética , Quimera/crecimiento & desarrollo , Células Germinativas/citología , Animales , Línea Celular , Células Cultivadas , Pollos/crecimiento & desarrollo , Técnicas de Cocultivo , Femenino , Técnicas de Transferencia de Gen , Células Germinativas/metabolismo , Masculino , Ratas
3.
MAbs ; 10(4): 636-650, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29494279

RESUMEN

Identifying monoclonal antibodies that block human voltage-gated ion channels (VGICs) is a challenging endeavor exacerbated by difficulties in producing recombinant ion channel proteins in amounts that support drug discovery programs. We have developed a general strategy to address this challenge by combining high-level expression of recombinant VGICs in Tetrahymena thermophila with immunization of phylogenetically diverse species and unique screening tools that allow deep-mining for antibodies that could potentially bind functionally important regions of the protein. Using this approach, we targeted human Kv1.3, a voltage-gated potassium channel widely recognized as a therapeutic target for the treatment of a variety of T-cell mediated autoimmune diseases. Recombinant Kv1.3 was used to generate and recover 69 full-length anti-Kv1.3 mAbs from immunized chickens and llamas, of which 10 were able to inhibit Kv1.3 current. Select antibodies were shown to be potent (IC50<10 nM) and specific for Kv1.3 over related Kv1 family members, hERG and hNav1.5.


Asunto(s)
Anticuerpos Monoclonales , Descubrimiento de Drogas/métodos , Canal de Potasio Kv1.3/antagonistas & inhibidores , Animales , Camélidos del Nuevo Mundo , Pollos , Humanos , Proteínas Recombinantes , Tetrahymena thermophila
4.
MAbs ; 10(1): 71-80, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29035625

RESUMEN

Transgenic animal platforms for the discovery of human monoclonal antibodies have been developed in mice, rats, rabbits and cows. The immune response to human proteins is limited in these animals by their tolerance to mammalian-conserved epitopes. To expand the range of epitopes that are accessible, we have chosen an animal host that is less phylogenetically related to humans. Specifically, we generated transgenic chickens expressing antibodies from immunoglobulin heavy and light chain loci containing human variable regions and chicken constant regions. From these birds, paired human light and heavy chain variable regions are recovered and cloned as fully human recombinant antibodies. The human antibody-expressing chickens exhibit normal B cell development and raise immune responses to conserved human proteins that are not immunogenic in mice. Fully human monoclonal antibodies can be recovered with sub-nanomolar affinities. Binning data of antibodies to a human protein show epitope coverage similar to wild type chickens, which we previously showed is broader than that produced from rodent immunizations.


Asunto(s)
Anticuerpos Monoclonales Humanizados/biosíntesis , Anticuerpos Monoclonales Humanizados/inmunología , Afinidad de Anticuerpos , Especificidad de Anticuerpos , Antígenos/inmunología , Pollos/inmunología , Epítopos/inmunología , Inmunoglobulinas/inmunología , Animales , Animales Modificados Genéticamente , Antígenos/administración & dosificación , Linfocitos B/inmunología , Pollos/sangre , Pollos/genética , Mapeo Epitopo , Humanos , Inmunización , Inmunoglobulinas/sangre , Inmunoglobulinas/genética , Especificidad de la Especie , Linfocitos T/inmunología
5.
Eur J Immunol ; 46(9): 2137-48, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27392810

RESUMEN

Since the discovery of antibody-producing B cells in chickens six decades ago, chickens have been a model for B-cell development in gut-associated lymphoid tissue species. Here we describe targeting of the immunoglobulin light chain locus by homologous recombination in chicken primordial germ cells (PGCs) and generation of VJCL knockout chickens. In contrast to immunoglobulin heavy chain knockout chickens, which completely lack mature B cells, homozygous light chain knockout (IgL(-/-) ) chickens have a small population of B lineage cells that develop in the bursa and migrate to the periphery. This population of B cells expresses the immunoglobulin heavy chain molecule on the cell surface. Soluble heavy-chain-only IgM and IgY proteins of reduced molecular weight were detectable in plasma in 4-week-old IgL(-/-) chickens, and antigen-specific IgM and IgY heavy chain proteins were produced in response to immunization. Circulating heavy-chain-only IgM showed a deletion of the CH1 domain of the constant region enabling the immunoglobulin heavy chain to be secreted in the absence of the light chain. Our data suggest that the heavy chain by itself is enough to support all the important steps in B-cell development in a gut-associated lymphoid tissue species.


Asunto(s)
Anticuerpos/genética , Linfocitos B/inmunología , Linfocitos B/metabolismo , Expresión Génica , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas Ligeras de Inmunoglobulina/genética , Animales , Animales Modificados Genéticamente , Anticuerpos/inmunología , Formación de Anticuerpos/genética , Formación de Anticuerpos/inmunología , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Pollos , Eliminación de Gen , Técnicas de Inactivación de Genes , Orden Génico , Marcación de Gen , Vectores Genéticos/genética , Cadenas Ligeras de Inmunoglobulina/química , Células Plasmáticas/inmunología , Células Plasmáticas/metabolismo , Dominios Proteicos/genética
6.
PLoS One ; 11(4): e0154303, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27099923

RESUMEN

The CRISPR/Cas9 system has been applied in a large number of animal and plant species for genome editing. In chickens, CRISPR has been used to knockout genes in somatic tissues, but no CRISPR-mediated germline modification has yet been reported. Here we use CRISPR to target the chicken immunoglobulin heavy chain locus in primordial germ cells (PGCs) to produce transgenic progeny. Guide RNAs were co-transfected with a donor vector for homology-directed repair of the double-strand break, and clonal populations were selected. All of the resulting drug-resistant clones contained the correct targeting event. The targeted cells gave rise to healthy progeny containing the CRISPR-targeted locus. The results show that gene-edited chickens can be obtained by modifying PGCs in vitro with the CRISPR/Cas9 system, opening up many potential applications for efficient genetic modification in birds.


Asunto(s)
Sistemas CRISPR-Cas , Pollos/genética , Edición Génica/métodos , Genoma , Recombinación Homóloga , Cadenas Pesadas de Inmunoglobulina/genética , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Pollos/crecimiento & desarrollo , Clonación de Organismos , Embrión no Mamífero , Femenino , Técnicas de Inactivación de Genes , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Células Germinativas , Proteínas Fluorescentes Verdes/deficiencia , Proteínas Fluorescentes Verdes/genética , Masculino , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo
7.
Microscopy (Oxf) ; 65(4): 341-52, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27107009

RESUMEN

The analysis of secreted antibody from large and diverse populations of B cells in parallel at the clonal level can reveal desirable antibodies for diagnostic or therapeutic applications. By immobilizing B cells in microdroplets with particulate reporters, decoding and isolating them in a microscopy environment, we have recovered panels of antibodies with rare attributes to therapeutically relevant targets. The ability to screen up to 100 million cells in a single experiment can be fully leveraged by accessing primary B-cell populations from evolutionarily divergent species such as chickens.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Linfocitos B/metabolismo , Hibridomas/inmunología , Receptores CCR5/inmunología , Receptores Purinérgicos P2X3/inmunología , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/inmunología , Animales , Anticuerpos Monoclonales/uso terapéutico , Linfocitos B/inmunología , Células CHO , Línea Celular Tumoral , Pollos , Cricetulus , Descubrimiento de Drogas/métodos , Humanos , Hibridomas/metabolismo , Células Jurkat , Bazo/citología
8.
Transgenic Res ; 25(5): 609-16, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27034267

RESUMEN

Cre recombinase has been extensively used for genome engineering in transgenic mice yet its use in other species has been more limited. Here we describe the generation of transgenic chickens expressing Cre recombinase. Green fluorescent protein (GFP)-positive chicken primordial germ cells were stably transfected with ß-actin-Cre-recombinase using phiC31 integrase and transgenic chickens were generated. Cre recombinase activity was verified by mating Cre birds to birds carrying a floxed transgene. Floxed sequences were only excised in offspring from roosters that inherited the Cre recombinase but were excised in all offspring from hens carrying the Cre recombinase irrespective of the presence of the Cre transgene. The Cre recombinase transgenic birds were healthy and reproductively normal. The Cre and GFP genes in two of the lines were closely linked whereas the genes segregated independently in a third line. These founders allowed development of GFP-expressing and non-GFP-expressing Cre recombinase lines. These lines of birds create a myriad of opportunities to study developmentally-regulated and tissue-specific expression of transgenes in chickens.


Asunto(s)
Pollos/genética , Integrasas/genética , Recombinación Genética , Animales , Animales Modificados Genéticamente , Regulación de la Expresión Génica , Proteínas Fluorescentes Verdes , Especificidad de Órganos , Regiones Promotoras Genéticas , Transgenes
9.
Poult Sci ; 94(4): 799-803, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25828572

RESUMEN

During the past decade, modifications to the chicken genome have evolved from random insertions of small transgenes using viral vectors to site-specific deletions using homologous recombination vectors and nontargeted insertions of large transgenes using phi-31 integrase. Primordial germ cells (PGC) and gonocytes are the germline-competent cell lines in which targeted modifications and large transgenes are inserted into the genome. After extended periods of in vitro culture, PGC retain their capacity to form functional gametes when reintroduced in vivo. Rates of stable germline modification vary from 1×10(-5) for nontargeted insertions to 1×10(-8) for targeted insertions. Following transfection, clonally derived cell lines are expanded, injected into Stage 13-15 Hamburger and Hamilton embryos, and putative chimeras are incubated to term in surrogate shells. Green fluorescent protein (GFP) is incorporated into transgenes to reveal the presence of genetically modified PGC in culture and the extent of colonization of the gonad during the first week posthatch. If the extent of colonization is adequate, cohorts of putative chimeras are reared to sexual maturity. Semen is collected and the contribution from donor PGC is estimated by evaluating GFP expression using flow cytometry and PCR. The most promising candidates are selected for breeding to obtain G1 heterozygote offspring. To date, this protocol has been used to (1) knockout the immunoglobulin heavy and light chain genes and produce chickens lacking humoral immunity, (2) insert human V genes and arrays of pseudo V genes into the heavy and light immunoglobulin loci to produce chickens making antibodies with human V regions, (3) insert GFP into nontargeted locations within the genome to produce chickens expressing GFP, and (4) insert Cre recombinase into the genome to produce chickens that excise sequences of DNA flanked by loxP sites.


Asunto(s)
Pollos/genética , Genoma , Mutagénesis Insercional , Transgenes , Animales , Humanos
10.
PLoS One ; 8(11): e80108, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24278246

RESUMEN

Transgenic chickens expressing human sequence antibodies would be a powerful tool to access human targets and epitopes that have been intractable in mammalian hosts because of tolerance to conserved proteins. To foster the development of the chicken platform, it is beneficial to validate transgene constructs using a rapid, cell culture-based method prior to generating fully transgenic birds. We describe a method for the expression of human immunoglobulin variable regions in the chicken DT40 B cell line and the further diversification of these genes by gene conversion. Chicken VL and VH loci were knocked out in DT40 cells and replaced with human VK and VH genes. To achieve gene conversion of human genes in chicken B cells, synthetic human pseudogene arrays were inserted upstream of the functional human VK and VH regions. Proper expression of chimeric IgM comprised of human variable regions and chicken constant regions is shown. Most importantly, sequencing of DT40 genetic variants confirmed that the human pseudogene arrays contributed to the generation of diversity through gene conversion at both the Igl and Igh loci. These data show that engineered pseudogene arrays produce a diverse pool of human antibody sequences in chicken B cells, and suggest that these constructs will express a functional repertoire of chimeric antibodies in transgenic chickens.


Asunto(s)
Anticuerpos/genética , Linfocitos B/metabolismo , Pollos/genética , Conversión Génica , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Anticuerpos/química , Secuencia de Bases , Western Blotting , Línea Celular , Cartilla de ADN , Citometría de Flujo , Humanos , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido
11.
Proc Natl Acad Sci U S A ; 110(50): 20170-5, 2013 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-24282302

RESUMEN

Gene targeting by homologous recombination or by sequence-specific nucleases allows the precise modification of genomes and genes to elucidate their functions. Although gene targeting has been used extensively to modify the genomes of mammals, fish, and amphibians, a targeting technology has not been available for the avian genome. Many of the principles of humoral immunity were discovered in chickens, yet the lack of gene targeting technologies in birds has limited biomedical research using this species. Here we describe targeting the joining (J) gene segment of the chicken Ig heavy chain gene by homologous recombination in primordial germ cells to establish fully transgenic chickens carrying the knockout. In homozygous knockouts, Ig heavy chain production is eliminated, and no antibody response is elicited on immunization. Migration of B-lineage precursors into the bursa of Fabricius is unaffected, whereas development into mature B cells and migration from the bursa are blocked in the mutants. Other cell types in the immune system appear normal. Chickens lacking the peripheral B-cell population will provide a unique experimental model to study avian immune responses to infectious disease. More generally, gene targeting in avian primordial germ cells will foster advances in diverse fields of biomedical research such as virology, stem cells, and developmental biology, and provide unique approaches in biotechnology, particularly in the field of antibody discovery.


Asunto(s)
Linfocitos B/citología , Pollos/genética , Técnicas de Inactivación de Genes/métodos , Ingeniería Genética/métodos , Células Germinativas/química , Cadenas Pesadas de Inmunoglobulina/genética , Animales , Linfocitos B/metabolismo , Southern Blotting , Pollos/inmunología , Metilación de ADN , Cartilla de ADN/genética , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Genotipo , Células Germinativas/metabolismo , Inmunohistoquímica
12.
PLoS One ; 7(5): e35664, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22629301

RESUMEN

In birds, the primordial germ cell (PGC) lineage separates from the soma within 24 h following fertilization. Here we show that the endogenous population of about 200 PGCs from a single chicken embryo can be expanded one million fold in culture. When cultured PGCs are injected into a xenogeneic embryo at an equivalent stage of development, they colonize the testis. At sexual maturity, these donor PGCs undergo spermatogenesis in the xenogeneic host and become functional sperm. Insemination of semen from the xenogeneic host into females from the donor species produces normal offspring from the donor species. In our model system, the donor species is chicken (Gallus domesticus) and the recipient species is guinea fowl (Numida meleagris), a member of a different avian family, suggesting that the mechanisms controlling proliferation of the germline are highly conserved within birds. From a pragmatic perspective, these data are the basis of a novel strategy to produce endangered species of birds using domesticated hosts that are both tractable and fecund.


Asunto(s)
Quimera/genética , Galliformes/genética , Células Germinativas/citología , Animales , Línea Celular , Células Cultivadas , Femenino , Masculino
13.
J Immunol ; 183(10): 6338-45, 2009 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-19841167

RESUMEN

Native human Abs represent attractive drug candidates; however, the low frequency of B cells expressing high-quality Abs has posed a barrier to discovery. Using a novel single-cell phenotyping technology, we have overcome this barrier to discover human Abs targeting the conserved but poorly immunogenic central motif of respiratory syncytial virus (RSV) G protein. For the entire cohort of 24 subjects with recent RSV infection, B cells producing Abs meeting these stringent specificity criteria were rare, <10 per million. Several of the newly cloned Abs bind to the RSV G protein central conserved motif with very high affinity (K(d) 1-24 pM). Two of the Abs were characterized in detail and compared with palivizumab, a humanized mAb against the RSV F protein. Relative to palivizumab, the anti-G Abs showed improved viral neutralization potency in vitro and enhanced reduction of infectious virus in a prophylaxis mouse model. Furthermore, in a mouse model for postinfection treatment, both anti-G Abs were significantly more effective than palivizumab at reducing viral load. The combination of activity in mouse models for both prophylaxis and treatment makes these high-affinity human-derived Abs promising candidates for human clinical testing.


Asunto(s)
Anticuerpos Antivirales/uso terapéutico , Linfocitos B/inmunología , Infecciones por Virus Sincitial Respiratorio/terapia , Virus Sincitial Respiratorio Humano/inmunología , Proteínas Virales de Fusión/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/metabolismo , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales Humanizados , Anticuerpos Antivirales/inmunología , Afinidad de Anticuerpos/inmunología , Antígenos Virales/inmunología , Antígenos Virales/metabolismo , Linfocitos B/virología , Línea Celular , Humanos , Ratones , Pruebas de Neutralización , Palivizumab , Proteínas Recombinantes/inmunología , Infecciones por Virus Sincitial Respiratorio/prevención & control , Transfección , Carga Viral/efectos de los fármacos , Carga Viral/inmunología
14.
J Immunol Methods ; 341(1-2): 127-34, 2009 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-19084532

RESUMEN

Micron scale latex beads are well established as highly biocompatible reagents. Imbibing two fluorescent dyes into the interior of the beads enables the creation of a family of combinatorially colored labels. Previous use of such beads, in flow cytometry for example, has focused on beads of approximately 5 microm diameter. We show here that 280 nm combinatorially labeled particles can be used to create ELISA-style assays in 200 microm scale virtual wells, using digital microscopy as the readout. The utility of this technique is illustrated by profiling the secreted cytokine footprints of peripheral blood mononuclear cells in a multiparametric version of the popular Elispot assay. Doing so reveals noncanonical classes of T lymphocytes. We further show that the secreting cell type can be concurrently identified by surface staining with a cell type specific antibody conjugated to the same multiplexed beads.


Asunto(s)
Anticuerpos/química , Citometría de Flujo/métodos , Inmunoensayo/métodos , Microesferas , Linfocitos T/citología , Linfocitos T/inmunología , Anticuerpos/inmunología , Citocinas/análisis , Citocinas/inmunología , Humanos
15.
J Immunol Methods ; 341(1-2): 135-45, 2009 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-19087879

RESUMEN

The secreted immunoglobulin footprint of single hybridoma cells, containing ~10 fg of antibody purified in situ, has been probed for 9 properties concurrently by use of detection labels comprising 280 nm combinatorially colored fluorescent latex beads functionalized with proteins. Specificity of each individual hybridoma cell's product has thereby been assessed in a primary screen. Varying the density of antigen on beads to modulate the avidity of the interaction between bead and secreted antibody footprint allowed rank ordering by affinity in the same primary screen. As more criteria were added to the selection process, the frequency of positive cells went down; in some cases, the favorable cell was present at <1/50,000. Recovery of the cell of interest was accomplished by plating the cells in a viscous medium on top of a membrane. After collecting the antibody footprint on a capture surface beneath the membrane, the immobilized cells were transferred to an incubator while the footprints were analyzed to locate the hybridoma cells of interest. The desired cells were then cloned by picking them from the corresponding locations on the membrane.


Asunto(s)
Afinidad de Anticuerpos/inmunología , Especificidad de Anticuerpos/inmunología , Hibridomas/citología , Hibridomas/inmunología , Inmunoensayo/métodos , Inmunoglobulinas/inmunología , Animales , Hibridomas/metabolismo , Inmunoglobulinas/metabolismo , Ratones , Ratones Endogámicos BALB C , Microesferas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA