Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Plant Sci ; 332: 111719, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37116717

RESUMEN

The nuclear pore is structurally conserved across eukaryotes as are many of the pore's constituent proteins. The transmembrane nuclear pore proteins GP210 and NDC1 span the nuclear envelope holding the nuclear pore in place. Orthologues of GP210 and NDC1 in Arabidopsis were investigated through characterisation of T-DNA insertional mutants. While the T-DNA insert into GP210 reduced expression of the gene, the insert in the NDC1 gene resulted in increased expression in both the ndc1 mutant as well as the ndc1/gp210 double mutant. The ndc1 and gp210 individual mutants showed little phenotypic difference from wild-type plants, but the ndc1/gp210 mutant showed a range of phenotypic effects. As with many plant nuclear pore protein mutants, these effects included non-nuclear phenotypes such as reduced pollen viability, reduced growth and glabrous leaves in mature plants. Importantly, however, ndc1/gp210 exhibited nuclear-specific effects including modifications to nuclear shape in different cell types. We also observed functional changes to nuclear transport in ndc1/gp210 plants, with low levels of cytoplasmic fluorescence observed in cells expressing nuclear-targeted GFP. The lack of phenotypes in individual insertional lines, and the relatively mild phenotype suggests that additional transmembrane nucleoporins, such as the recently-discovered CPR5, likely compensate for their loss.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citoplasma/metabolismo , Proteínas de la Membrana/metabolismo , Membrana Nuclear/metabolismo , Poro Nuclear/genética , Poro Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo
2.
J Exp Bot ; 73(16): 5414-5427, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-35609084

RESUMEN

In Arabidopsis, polarized deposition of wall ingrowths in phloem parenchyma (PP) transfer cells (TCs) occurs adjacent to cells of the sieve element/companion cell (SE/CC) complex. However, the spatial relationships between these different cell types in minor veins, where phloem loading occurs, are poorly understood. PP TC development and wall ingrowth localization were compared with those of other phloem cells in leaves of Col-0 and the transgenic lines AtSUC2::AtSTP9-GFP (green fluorescent protein) and AtSWEET11::AtSWEET11-GFP that identify CCs and PP cells, respectively. The development of PP TCs in minor veins, indicated by deposition of wall ingrowths, proceeded basipetally in leaves. However, not all PP cells develop wall ingrowths, and higher levels of deposition occur in abaxial- compared with adaxial-positioned PP TCs. Furthermore, the deposition of wall ingrowths was exclusively initiated on and preferentially covered the PP TC/SE interface, rather than the PP TC/CC interface, and only occurred in PP cells that were adjacent to SEs. Collectively, these results demonstrate a tight association between SEs and wall ingrowth deposition in PP TCs and suggest the existence of two subtypes of PP cells in leaf minor veins. Compared with PP cells, PP TCs showed more abundant accumulation of AtSWEET11-GFP, indicating functional differences in phloem loading between PP and PP TCs.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Floema/metabolismo , Hojas de la Planta/metabolismo
3.
J Exp Bot ; 73(3): 756-769, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-34677585

RESUMEN

Phi thickenings are peculiar secondary cell wall thickenings found in radial walls of cortical cells in plant roots. However, while thickenings are widespread in the plant kingdom, research into their development has been lacking. Here, we describe a simple system for rapid induction of phi thickenings in primary roots of Brassica. Four-day-old seedlings were transferred from control agar plates to new plates containing increased levels of osmotica. Phi thickening development occurred within a narrow region of the differentiation zone proportional to osmolarity, with cellulose deposition and lignification starting after 12h and 15h, respectively. However, osmoprotectants not only failed to induce phi thickenings, but inhibited induction when tested in combination with thickening-inducing osmotica. An independent, biomechanical pathway exists regulating phi thickening induction, with root growth rates and substrate texture being important factors in determining thickening induction. Phi thickening development is also controlled by stress-related plant hormones, most notably jasmonic acid, but also abscisic acid. Our research not only provides the first understanding of the developmental pathways controlling phi thickening induction, but also provides tools with which the functions of these enigmatic structures might be clarified.


Asunto(s)
Brassica , Raíces de Plantas , Brassica/fisiología , Ciclopentanos , Presión Osmótica , Oxilipinas/metabolismo , Raíces de Plantas/metabolismo
4.
Plants (Basel) ; 10(7)2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34371560

RESUMEN

Understanding the mechanisms through which plants generate secondary cell walls is of more than academic interest: the physical properties of plant-derived materials, including timber and textiles, all depend upon secondary wall cellulose organization. Processes controlling cellulose in the secondary cell wall and their reliance on microtubules have been documented in recent decades, but this understanding is complicated, as secondary walls normally form in the plant's interior where live cell imaging is more difficult. We investigated secondary wall formation in the orchid velamen, a multicellular epidermal layer found around orchid roots that consists of dead cells with lignified secondary cell walls. The patterns of cell wall ridges that form within the velamen vary between different orchid species, but immunolabelling demonstrated that wall deposition is controlled by microtubules. As these patterning events occur at the outer surface of the root, and as orchids are adaptable for tissue culture and genetic manipulation, we conclude that the orchid root velamen may indeed be a suitable model system for studying the organization of the plant cell wall. Notably, roots of the commonly grown orchid Laelia anceps appear ideally suited for developing this research.

5.
Plant Sci ; 310: 110990, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34315604

RESUMEN

Transfer cells (TCs) develop extensive wall ingrowths to facilitate enhanced rates of membrane transport. In Arabidopsis, TCs trans-differentiate from phloem parenchyma (PP) cells abutting the sieve element/companion cell complex in minor veins of foliar tissues and, based on anatomy and expression of SWEET sucrose uniporters, are assumed to play pivotal roles in phloem loading. While wall ingrowth deposition in PP TCs is a dynamic process responding to abiotic stresses such as high light and cold, the transcriptional control of PP TC development, including deposition of the wall ingrowths themselves, is not understood. PP TC development is a trait of vegetative phase change, potentially linking wall ingrowth deposition with floral induction. Transcript profiling by RNA-seq identified NAC056 and NAC018 (NARS1 and NARS2) as putative regulators of wall ingrowth deposition, while recent single cell RNA-seq analysis of leaf vasculature identified PP-specific expression of NAC056. Numerous membrane transporters, particularly of the UmamiT family of amino acid efflux carriers, were also identified. Collectively, these findings, and the recent discovery that wall ingrowth deposition is regulated by sucrose-dependent loading activity of these cells, provide new insights into the biology of PP TCs and their importance to phloem loading in Arabidopsis, establishing these cells as a key transport hub for phloem loading.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Floema/metabolismo , Proteínas de Arabidopsis/genética , Pared Celular/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Hojas de la Planta/metabolismo , Análisis de Secuencia de ARN/métodos
6.
Tree Physiol ; 41(8): 1542-1557, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-33601410

RESUMEN

Interlocked grain occurs when the orientation of xylem fibres oscillates, alternating between left- and right-handed spirals in successive wood layers. The cellular mechanisms giving rise to interlocked grain, thought to involve the slow rotation of fusiform initials within the vascular cambium, remain unclear. We suggest that observations of wood structure at the cellular level, but over large areas, might reveal these mechanisms. We assayed timber from several commercially important tropical angiosperms from the genus Khaya (African mahogany) that exhibit interlocked grain using X-ray computed microtomography followed by orthogonal slicing and image processing in ImageJ. Reconstructed tangential longitudinal sections were processed with the ImageJ directionality plug-in to directly measure fibre orientation and showed grain deviations of more than 10° from vertical in both left- and right-handed directions. Grain changed at locally constant rates, separated by locations where the direction of grain change sharply reversed. Image thresholding and segmentation conducted on reconstructed cross sections allowed the identification of vessels and measurement of their location, with vessel orientations then calculated in Matlab and, independently, in recalculated tangential longitudinal sections with the directionality plug-in. Vessel orientations varied more than fibre orientations, and on average deviated further from vertical than fibres at the locations where the direction of grain change reversed. Moreover, the reversal location for vessels was shifted ~400 µm towards the pith compared with the fibres, despite both cell types arising from the same fusiform initials within the vascular cambium. We propose a simple model to explain these distinct grain patterns. Were an auxin signal to control both the reorientation of cambial initials, as well as coordinating the end-on-end differentiation and linkage of xylem vessel elements, then it would be possible for fibres and vessels to run at subtly different angles, and to show different grain reversal locations.


Asunto(s)
Meliaceae , Cámbium , Madera , Microtomografía por Rayos X , Rayos X , Xilema
7.
Plant Cell Physiol ; 61(10): 1775-1787, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32761075

RESUMEN

To understand plant growth and development, it is often necessary to investigate the organization of plant cells and plant cell walls. Plant cell walls are often fluorescently labeled for confocal imaging with the dye propidium iodide using a pseudo-Schiff reaction. This reaction binds free amine groups on dye molecules to aldehyde groups on cellulose that result from oxidation with periodic acid. We tested a range of fluorescent dyes carrying free amine groups for their ability to act as pseudo-Schiff reagents. Using the low-pH solution historically used for the Schiff reaction, these alternative dyes failed to label cell walls of Arabidopsis cotyledon vascular tissue as strongly as propidium iodide but replacing the acidic solution with water greatly improved fluorescence labeling. Under these conditions, rhodamine-123 provided improved staining of plant cell walls compared to propidium iodide. We also developed protocols for pseudo-Schiff labeling with ATTO 647N-amine, a dye compatible for super-resolution Stimulated Emission Depletion (STED) imaging. ATTO 647N-amine was used for super-resolution imaging of cell wall ingrowths that occur in phloem parenchyma transfer cells of Arabidopsis, structures whose small size is only slightly larger than the resolution limit of conventional confocal microscopy. Application of surface-rendering software demonstrated the increase in plasma membrane surface area as a consequence of wall ingrowth deposition and suggests that STED-based approaches will be useful for more detailed morphological analysis of wall ingrowth formation. These improvements in pseudo-Schiff labeling for conventional confocal microscopy and STED imaging will be broadly applicable for high-resolution imaging of plant cell walls.


Asunto(s)
Arabidopsis/ultraestructura , Pared Celular/ultraestructura , Colorantes Fluorescentes , Imagen Óptica/métodos , Arabidopsis/crecimiento & desarrollo , Membrana Celular/ultraestructura , Celulosa/metabolismo , Microscopía Confocal , Propidio , Rodamina 123
8.
J Exp Bot ; 71(16): 4690-4702, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32433727

RESUMEN

In Arabidopsis thaliana, phloem parenchyma transfer cells (PPTCs) occur in leaf minor veins and play a pivotal role in phloem loading. Wall ingrowth formation in PPTCs is induced by the phloem loading activity of these cells, which is regulated by sucrose (Suc). The effects of endogenous versus exogenous Suc on wall ingrowth deposition, however, differ. Elevating endogenous Suc levels by increased light enhanced wall ingrowth formation, whereas lowering endogenous Suc levels by dark treatment or genetically in ch-1 resulted in lower levels of deposition. In contrast, exogenously applied Suc, or Suc derived from other organs, repressed wall ingrowth deposition. Analysis of pAtSUC2::GFP plants, used as a marker for phloem loading status, suggested that wall ingrowth formation is correlated with phloem loading activity. Gene expression analysis revealed that exogenous Suc down-regulated expression of AtSWEET11 and 12, whereas endogenous Suc up-regulated AtSWEET11 expression. Analysis of a TREHALOSE 6-PHOSPHATE (T6P) SYNTHASE overexpression line and the hexokinase (HXK)-null mutant, gin2-1, suggested that Suc signalling of wall ingrowth formation is independent of T6P and HXK. Collectively, these results are consistent with the conclusion that Suc regulates wall ingrowth formation via affecting Suc exporting activity in PPTCs.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Floema/metabolismo , Hojas de la Planta/metabolismo , Sacarosa
9.
Plants (Basel) ; 9(2)2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-32050601

RESUMEN

In Arabidopsis, the actin gene family comprises eight expressed and two non-expressed ACTIN (ACT) genes. Of the eight expressed isoforms, ACT2, ACT7, and ACT8 are differentially expressed in vegetative tissues and may perform specific roles in development. Using tobacco mesophyll protoplasts, we previously demonstrated that actin-dependent clustering of chloroplasts around the nucleus prior to cell division ensures unbiased chloroplast inheritance. Here, we report that actin-dependent chloroplast clustering in Arabidopsis mesophyll protoplasts is defective in act7 mutants, but not act2-1 or act8-2. ACT7 expression was upregulated during protoplast culture whereas ACT2 and ACT8 expression did not substantially change. In act2-1, ACT7 expression increased in response to loss of ACT2, whereas in act7-1, neither ACT2 nor ACT8 expression changed appreciably in response to the absence of ACT7. Semi-quantitative immunoblotting revealed increased actin concentrations during culture, although total actin in act7-1 was only two-thirds that of wild-type or act2-1 after 96 h culture. Over-expression of ACT2 and ACT8 under control of ACT7 regulatory sequences restored normal levels of chloroplast clustering. These results are consistent with a requirement for ACT7 in actin-dependent chloroplast clustering due to reduced levels of actin protein and gene induction in act7 mutants, rather than strong functional specialization of the ACT7 isoform.

10.
Plants (Basel) ; 8(12)2019 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-31817554

RESUMEN

Phi thickenings are specialised secondary wall thickenings present in the root cortex of many plant species, including both angiosperms and gymnosperms. While environmental stresses induce phi thickenings, their role(s) in the root remain unclear. Suggested functions include regulation of transport through the apoplast in a manner similar to the Casparian strip, limiting fungal infections, and providing mechanical support to the root. We investigated phi thickening induction and function in Miltoniopsis sp., an epiphytic orchid. As movement of a fluorescent tracer through the apoplast was not blocked by phi thickenings, and as phi thickenings developed in the roots of sterile cultures in the absence of fungus and did not prevent fungal colonisation of cortical cells, the phi thickenings in Miltoniopsis did not function as a barrier. Phi thickenings, absent in roots grown on agar, remained absent when plants were transplanted to moist soil, but were induced when plants were transplanted to well-drained media, and by the application of water stress. We suggest that it is likely that phi thickenings stabilise to the root during water stress. Nevertheless, the varied phi thickening induction responses present in different plant species suggest that the phi thickenings may play multiple adaptive roles depending on species.

11.
Plants (Basel) ; 8(12)2019 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-31842412

RESUMEN

Peels from the inner epidermis of onion bulbs are a model system in plant cell biology. While the inner epidermis of red onions is characteristically white, small patches of cells sometimes redden, containing vacuolar anthocyanin. This study investigated the spectroscopic properties of these anthocyanic cells. When fluorescent dyes were loaded into the vacuole of onion epidermal cells, the anthocyanic cells showed decreased dye fluorescence. This decrease was observed for fluorescein and carboxyfluorescein that are pumped into the vacuole by anion transporters, for acridine orange which acid loads into the vacuole, and for the fluorescent sugar analogue esculin loaded into the vacuole by sucrose transporters. Similar decreases in carboxyfluorescein fluorescence were observed when dye was loaded into the vacuoles of several other plant species, but decreases were not observed for dyes resident in the tonoplast membrane. As cellular physiology was unaffected in the anthocyanic cells, with cytoplasmic streaming, vacuolar and cytoplasmic pH not being altered, the decreased dye fluorescence from the anthocyanic cells can be attributed to fluorescence quenching. Furthermore, because quenching decreased with increasing temperature. It was concluded, therefore, that vacuolar anthocyanin can statically quench other fluorescent molecules in vivo, an effect previously demonstrated for anthocyanin in vitro.

12.
J Exp Bot ; 70(18): 4631-4642, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31106830

RESUMEN

Phi thickenings are specialized secondary walls found in root cortical cells. Despite their widespread occurrence throughout the plant kingdom, these specialized thickenings remain poorly understood. First identified by Van Tieghem in 1871, phi thickenings are a lignified and thickened cell wall band that is deposited inside the primary wall, as a ring around the cells' radial walls. Phi thickenings can, however, display structural variations including a fine, reticulate network of wall thickenings extending laterally from the central lignified band. While phi thickenings have been proposed to mechanically strengthen roots, act as a permeability barrier to modulate solute movement, and regulate fungal interactions, these possibilities remain to be experimentally confirmed. Furthermore, since temporal and spatial development of phi thickenings varies widely between species, thickenings may perform diverse roles in different species. Phi thickenings can be induced by abiotic stresses in different species; they can, for example, be induced by heavy metals in the Zn/Cd hyperaccumulator Thlaspi caerulescens, and in a cultivar-specific manner by water stress in Brassica. This latter observation provides an experimental platform to probe phi thickening function, and to identify genetic pathways responsible for their formation. These pathways might be expected to differ from those involved in secondary wall formation in xylem, since phi thickening deposition in not linked to programmed cell death.


Asunto(s)
Brassica/fisiología , Raíces de Plantas/metabolismo , Thlaspi/fisiología , Brassica/citología , Pared Celular/fisiología , Raíces de Plantas/citología , Estrés Fisiológico , Thlaspi/citología
13.
Plants (Basel) ; 7(2)2018 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-29921823

RESUMEN

Phi thickenings are specialized bands of secondary wall deposited around radial walls of root cortical cells. These structures have been reported in various species from the Brassicaceae, including Brassica oleracea, where previous reports using hydroponics indicated that they can be induced by exposure to salt. Using roots grown on agar plates, we show that both salt and sucrose can induce the formation of phi thickenings in a diverse range of species within the Brassicaceae. Within the genus Brassica, both B. oleracea and B. napus demonstrated the formation of phi thickenings, but in a strongly cultivar-specific manner. Confocal microscopy of phi thickenings showed that they form a complex network of reinforcement surrounding the inner root cortex, and that a delicate, reticulate network of secondary wall deposition can also variously form on the inner face of the cortical cell layer with phi thickenings adjacent to the endodermal layer. Results presented here indicate that phi thickenings can be induced in response to salt and water stress and that wide variation occurs in these responses even within the same species.

14.
Lab Chip ; 17(21): 3643-3653, 2017 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-28959802

RESUMEN

Oomycetes and fungi are microorganisms whose pathogenic (invasive) growth can cause diseases that are responsible for significant ecological and economic losses. Such growth requires the generation of a protrusive force, the magnitude and direction of which involves a balance between turgor pressure and localised yielding of the cell wall and the cytoskeleton. To study invasive growth in individual hyphae we have developed a lab-on-a-chip platform with integrated force-sensors based on elastomeric polydimethylsiloxane (PDMS) micro-pillars. With this platform we are able to measure protrusive force (both magnitude and direction) and hyphal morphology. To show the usefulness of the platform, the oomycete Achlya bisexualis was inoculated and grown on a chip. Growth of individual hyphae into a micro-pillar revealed a maximum total force of 10 µN at the hyphal tip. The chips had no discernible effect on hyphal growth rates, but hyphae were slightly thinner in the channels on the chips compared to those on agar plates. When the hyphae contacted the pillars tip extension decreased while tip width increased. A. bisexualis hyphae were observed to reorient their growth direction if they were not able to bend and effectively grow over the pillars. Estimates of the pressure exerted on a pillar were 0.09 MPa, which given earlier measures of turgor of 0.65 MPa would indicate low compliance of the cell wall. The platform is adaptable to numerous cells and organisms that exhibit tip-growth. It provides a useful tool to begin to unravel the molecular mechanisms that underlie the generation of a protrusive force.


Asunto(s)
Elastómeros/química , Hifa/fisiología , Dispositivos Laboratorio en un Chip , Achlya/fisiología , Fenómenos Biomecánicos/fisiología , Pared Celular/fisiología , Dimetilpolisiloxanos/química , Elasticidad , Diseño de Equipo , Hongos/fisiología , Presión
15.
Plant Cell Rep ; 36(6): 987-1000, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28361257

RESUMEN

KEY MESSAGE: Novel imaging approaches have allowed measurements of the anthocyanin induction in onion epidermal cells that can be induced through water stress or transient expression of exogenous transcription factors. Environmental and genetic mechanisms that allow the normally colourless inner epidermal cells of red onion (Allium cepa) bulbs to accumulate anthocyanin were quantified by both absorbance ratios and fluorescence. We observed that water-stressing excised leaf segments induced anthocyanin formation, and fluorescence indicated that this anthocyanin was spectrally similar to the anthocyanin in the outer epidermal cells. This environmental induction may require a signal emanating from the leaf mesophyll, as induction did not occur in detached epidermal peels. Exogenous transcription factors that successfully drive anthocyanin biosynthesis in other species were also tested through transient gene expression using particle bombardment. Although the petunia R2R3-MYB factor AN2 induced anthocyanin in both excised leaves and epidermal peels, several transcription factors including maize C1 and Lc inhibited normal anthocyanin development in excised leaves. This inhibition may be due to moderate levels of conservation between the exogenous transcription factors and endogenous Allium transcription factors. The over-expressed exogenous transcription factors cannot drive anthocyanin biosynthesis themselves, but bind to the endogenous transcription factors and prevent them from driving anthocyanin biosynthesis.


Asunto(s)
Antocianinas/metabolismo , Cebollas/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Cebollas/genética , Hojas de la Planta/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Factores de Transcripción/genética
16.
Arch Virol ; 162(3): 849-855, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27878460

RESUMEN

Viruses in the genus Babuvirus have multi-component ssDNA genomes and often associate with alphasatellite molecules containing two common motifs, a common-region stem-loop (CR-SL) involved in initiation of rolling-circle replication and a common-region major (CR-M) motif involved in secondary-strand synthesis. We compared known babuvirus genome components and alphasatellite CR-SL and CR-M sequences, defining five divergent CR-SL sequence classes. We identified iterated sequence elements in babuvirus genome components that have particularly conserved sequences and spatial arrangements between known babuviruses.


Asunto(s)
Babuvirus/genética , ADN Satélite/genética , ADN Viral/genética , Secuencia de Bases , Secuencia Conservada , ADN de Cadena Simple/genética , Genoma Viral , Datos de Secuencia Molecular
17.
Anal Biochem ; 507: 40-6, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27235170

RESUMEN

The gills of euryhaline fish are the ultimate ionoregulatory tissue, achieving ion homeostasis despite rapid and significant changes in external salinity. Cellular handling of sodium is not only critical for salt and water balance but is also directly linked to other essential functions such as acid-base homeostasis and nitrogen excretion. However, although measurement of intracellular sodium ([Na(+)]i) is important for an understanding of gill transport function, it is challenging and subject to methodological artifacts. Using gill filaments from a model euryhaline fish, inanga (Galaxias maculatus), the suitability of the fluorescent dye CoroNa Green as a probe for measuring [Na(+)]i in intact ionocytes was confirmed via confocal microscopy. Cell viability was verified, optimal dye loading parameters were determined, and the dye-ion dissociation constant was measured. Application of the technique to freshwater- and 100% seawater-acclimated inanga showed salinity-dependent changes in branchial [Na(+)]i, whereas no significant differences in branchial [Na(+)]i were determined in 50% seawater-acclimated fish. This technique facilitates the examination of real-time changes in gill [Na(+)]i in response to environmental factors and may offer significant insight into key homeostatic functions associated with the fish gill and the principles of sodium ion transport in other tissues and organisms.


Asunto(s)
Branquias/metabolismo , Microscopía Confocal , Microscopía Fluorescente , Modelos Biológicos , Osmeriformes/metabolismo , Sodio/metabolismo , Animales , Supervivencia Celular , Branquias/citología , Transporte Iónico , Iones/metabolismo , Factores de Tiempo
18.
Plant Mol Biol ; 91(1-2): 1-13, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27008640

RESUMEN

The putative RNA helicase encoded by the Arabidopsis gene At1g32490 is a homolog of the yeast splicing RNA helicases Prp2 and Prp22. We isolated a temperature-sensitive allele (rsw12) of the gene in a screen for root radial swelling mutants. Plants containing this allele grown at the restrictive temperature showed weak radial swelling, were stunted with reduced root elongation, and contained reduced levels of cellulose. The role of the protein was further explored by microarray analysis. By using both fold change cutoffs and a weighted gene coexpression network analysis (WGCNA) to investigate coexpression of genes, we found that the radial swelling phenotype was not linked to genes usually associated with primary cell wall biosynthesis. Instead, the mutation has strong effects on expression of secondary cell wall related genes. Many genes potentially associated with secondary walls were present in the most significant WGCNA module, as were genes coding for arabinogalactans and proteins with GPI anchors. The proportion of up-regulated genes that possess introns in rsw12 was above that expected if splicing was unrelated to the activity of the RNA helicase, suggesting that the helicase does indeed play a role in splicing in Arabidopsis. The phenotype may be due to a change in the expression of one or more genes coding for cell wall proteins.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulación hacia Abajo/fisiología , ARN Helicasas/metabolismo , Empalme del ARN/fisiología , ARN Mensajero/metabolismo , Alelos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Mutación , ARN Helicasas/genética , ARN Mensajero/genética , Temperatura
19.
Arch Virol ; 161(4): 1019-26, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26733296

RESUMEN

Banana bunchy top virus (BBTV) is a multi-component single-stranded DNA virus. From 267 potentially infected Musa plants, 24 apparently 'defective' BBTV components have been identified. Interestingly, 23/24 of these defective molecules were apparently derived from DNA-R. All of the identified defective molecules had retained at least part of the CR-SL and CR-M but had insertions and/or deletions that in most cases resulted in open reading frame disruptions. Our detection of three monophyletic but diverse (and therefore likely circulating) defective DNA-R lineages suggests that, in many cases, defective DNA-R molecules might remain associated with BBTV genomes for prolonged periods.


Asunto(s)
Babuvirus/genética , ADN Viral , Simulación por Computador , Regulación Viral de la Expresión Génica , Genoma Viral , Mutación , Sistemas de Lectura Abierta , Filogenia
20.
Plant Methods ; 11: 40, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26300953

RESUMEN

BACKGROUND: The transmitted light detectors present on most modern confocal microscopes are an under-utilised tool for the live imaging of plant cells. As the light forming the image in this detector is not passed through a pinhole, out-of-focus light is not removed. It is this extended focus that allows the transmitted light image to provide cellular and organismal context for fluorescence optical sections generated confocally. More importantly, the transmitted light detector provides images that have spatial and temporal registration with the fluorescence images, unlike images taken with a separately-mounted camera. RESULTS: Because plants often provide difficulties for taking transmitted light images, with the presence of pigments and air pockets in leaves, this study documents several approaches to improving transmitted light images beginning with ensuring that the light paths through the microscope are correctly aligned (Köhler illumination). Pigmented samples can be imaged in real colour using sequential scanning with red, green and blue lasers. The resulting transmitted light images can be optimised and merged in ImageJ to generate colour images that maintain registration with concurrent fluorescence images. For faster imaging of pigmented samples, transmitted light images can be formed with non-absorbed wavelengths. Transmitted light images of Arabidopsis leaves expressing GFP can be improved by concurrent illumination with green and blue light. If the blue light used for YFP excitation is blocked from the transmitted light detector with a cheap, coloured glass filters, the non-absorbed green light will form an improved transmitted light image. Changes in sample colour can be quantified by transmitted light imaging. This has been documented in red onion epidermal cells where changes in vacuolar pH triggered by the weak base methylamine result in measurable colour changes in the vacuolar anthocyanin. CONCLUSIONS: Many plant cells contain visible levels of pigment. The transmitted light detector provides a useful tool for documenting and measuring changes in these pigments while maintaining registration with confocal imaging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA