Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Diseases ; 12(6)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38920561

RESUMEN

Previous studies involving workers at brick kilns in the Kathmandu Valley of Nepal have investigated chronic exposure to hazardous levels of fine particulate matter (PM2.5) common in ambient and occupational environments. Such exposures are known to cause and/or exacerbate chronic respiratory diseases, including chronic obstructive pulmonary disease (COPD) and asthma. However, there is a paucity of data regarding the status of systemic inflammation observed in exposed workers at brick manufacturing facilities within the country. In the current study, we sought to elucidate systemic inflammatory responses by quantifying the molecular cytokine/chemokine profiles in serum from the study participants. A sample of participants were screened from a kiln in Bhaktapur, Nepal (n = 32; 53% female; mean ± standard deviation: 28.42 ± 11.47 years old) and grouped according to job category. Blood was procured from participants on-site, allowed to clot at room temperature, and centrifuged to obtain total serum. A human cytokine antibody array was used to screen the inflammatory mediators in serum samples from each of the participants. For the current study, four job categories were evaluated with n = 8 for each. Comparisons were generated between a control group of administration workers vs. fire master workers, administration workers vs. green brick hand molders, and administration workers vs. top loaders. We discovered significantly increased concentrations of eotaxin-1, eotaxin-2, GCSF, GM-CSF, IFN-γ, IL-1α, IL-1ß, IL-6, IL-8, TGF-ß1, TNF-α, and TIMP-2 in serum samples from fire master workers vs. administration workers (p < 0.05). Each of these molecules was also significantly elevated in serum from green brick hand molders compared to administration workers (p < 0.05). Further, each molecule in the inflammatory screening with the exception of TIMP-2 was significantly elevated in serum from top loaders compared to administration workers (p < 0.05). With few exceptions, the fire master workers expressed significantly more systemic inflammatory molecular abundance when compared to all other job categories. These results reveal an association between pulmonary exposure to PM2.5 and systemic inflammatory responses likely mediated by cytokine/chemokine elaboration. The additional characterization of a broader array of inflammatory molecules may provide valuable insight into the susceptibility to lung diseases among this population.

2.
J Occup Environ Hyg ; 21(4): 247-258, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38451548

RESUMEN

Exposure to respirable dust and crystalline silica (SiO2) has been linked to chronic obstructive pulmonary disease, silicosis, cancer, heart disease, and other respiratory diseases. Relatively few studies have measured respirable dust and SiO2 concentrations among workers at brick kilns in low- and middle-income countries. The purpose of this study was to measure personal breathing zone (PBZ) respirable dust and SiO2 concentrations among workers at one brick kiln in Bhaktapur, Nepal. A cross-sectional study was conducted among 49 workers in five job categories: administration, fire master, green (unfired) brick hand molder, green brick machine molder, and top loader. PBZ air samples were collected from each worker following Methods 0600 (respirable dust) and 7500 (respirable crystalline SiO2: cristobalite, quartz, tridymite) of the U.S. National Institute for Occupational Safety and Health. Eight-hour time-weighted average (TWA) respirable dust and quartz concentrations were also calculated. SiO2 percentage was measured in one bulk sample each of wet clay, the release agent used by green brick hand molders, and top coat soil at the brick kiln. The geometric mean (GM) sample and TWA respirable dust concentrations were 0.20 (95% confidence interval [CI]: 0.16, 0.27) and 0.12 (95% CI: 0.09, 0.16) mg/m3, respectively. GM sample and TWA quartz concentrations were 15.28 (95% CI: 11.11, 21.02) and 8.60 (95% CI: 5.99, 12.34) µg/m3, respectively. Job category was significantly associated with GM sample and TWA respirable dust and quartz concentrations (all p < 0.0001). Top loaders had the highest GM sample and TWA respirable dust concentrations of 1.49 and 0.99 mg/m3, respectively. Top loaders also had the highest GM sample and TWA quartz concentrations of 173.08 and 114.39 µg/m3, respectively. Quartz percentages in bulk samples were 16%-27%. Interventions including using wet methods to reduce dust generation, administrative controls, personal protective equipment, and education and training should be implemented to reduce brick kiln worker exposures to respirable dust and SiO2.


Asunto(s)
Contaminantes Ocupacionales del Aire , Exposición Profesional , Humanos , Dióxido de Silicio/análisis , Exposición Profesional/análisis , Cuarzo/análisis , Polvo/análisis , Contaminantes Ocupacionales del Aire/análisis , Nepal , Estudios Transversales , Exposición por Inhalación/análisis
3.
Toxics ; 11(1)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36668782

RESUMEN

Increasing concern over air pollution has led to the development of low-cost sensors suitable for wide-scale deployment and use by citizen scientists. This project investigated the AirU low-cost particle sensor using two methods: (1) a comparison of pre- and post-deployment calibration equations for 24 devices following use in a field study, and (2) an in-home comparison between 3 AirUs and a reference instrument, the GRIMM 1.109. While differences (and therefore some sensor degradation) were found in the pre- and post-calibration equation comparison, absolute value changes were small and unlikely to affect the quality of results. Comparison tests found that while the AirU did tend to underestimate minimum and overestimate maximum concentrations of particulate matter, ~88% of results fell within ±1 µg/m3 of the GRIMM. While these tests confirm that low-cost sensors such as the AirU do experience some sensor degradation over multiple months of use, they remain a valuable tool for exposure assessment studies. Further work is needed to examine AirU performance in different environments for a comprehensive survey of capability, as well as to determine the source of sensor degradation.

4.
Hum Reprod Update ; 29(1): 45-70, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-35894871

RESUMEN

BACKGROUND: Air pollution is both a sensory blight and a threat to human health. Inhaled environmental pollutants can be naturally occurring or human-made, and include traffic-related air pollution (TRAP), ozone, particulate matter (PM) and volatile organic compounds, among other substances, including those from secondhand smoking. Studies of air pollution on reproductive and endocrine systems have reported associations of TRAP, secondhand smoke (SHS), organic solvents and biomass fueled-cooking with adverse birth outcomes. While some evidence suggests that air pollution contributes to infertility, the extant literature is mixed, and varying effects of pollutants have been reported. OBJECTIVE AND RATIONALE: Although some reviews have studied the association between common outdoor air pollutants and time to pregnancy (TTP), there are no comprehensive reviews that also include exposure to indoor inhaled pollutants, such as airborne occupational toxicants and SHS. The current systematic review summarizes the strength of evidence for associations of outdoor air pollution, SHS and indoor inhaled air pollution with couple fecundability and identifies gaps and limitations in the literature to inform policy decisions and future research. SEARCH METHODS: We performed an electronic search of six databases for original research articles in English published since 1990 on TTP or fecundability and a number of chemicals in the context of air pollution, inhalation and aerosolization. Standardized forms for screening, data extraction and study quality were developed using DistillerSR software and completed in duplicate. We used the Newcastle-Ottawa Scale to assess risk of bias and devised additional quality metrics based on specific methodological features of both air pollution and fecundability studies. OUTCOMES: The search returned 5200 articles, 4994 of which were excluded at the level of title and abstract screening. After full-text screening, 35 papers remained for data extraction and synthesis. An additional 3 papers were identified independently that fit criteria, and 5 papers involving multiple routes of exposure were removed, yielding 33 articles from 28 studies for analysis. There were 8 papers that examined outdoor air quality, while 6 papers examined SHS exposure and 19 papers examined indoor air quality. The results indicated an association between outdoor air pollution and reduced fecundability, including TRAP and specifically nitrogen oxides and PM with a diameter of ≤2.5 µm, as well as exposure to SHS and formaldehyde. However, exposure windows differed greatly between studies as did the method of exposure assessment. There was little evidence that exposure to volatile solvents is associated with reduced fecundability. WIDER IMPLICATIONS: The evidence suggests that exposure to outdoor air pollutants, SHS and some occupational inhaled pollutants may reduce fecundability. Future studies of SHS should use indoor air monitors and biomarkers to improve exposure assessment. Air monitors that capture real-time exposure can provide valuable insight about the role of indoor air pollution and are helpful in assessing the short-term acute effects of pollutants on TTP.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Ambientales , Contaminación por Humo de Tabaco , Embarazo , Femenino , Humanos , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Fertilidad
5.
Front Public Health ; 9: 606430, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33748060

RESUMEN

Native American populations face considerable health disparities, especially among those who live on reservations, where access to healthcare, education, and safe housing can be limited. Previous research on tribal housing has raised concerns about housing construction, damage, and possible linkage to adverse health effects (e.g., asthma). This community-based participatory research (CBPR) project investigated indoor air quality issues on two Rocky Mountain west reservations. At the onset of the project, the research team formed a partnership with community advisory boards (CABs) consisting of representatives from tribal councils and community members. Research design, implementation, and dissemination all took place in full collaboration with the CABs following approval through official tribal resolutions. Residential homes were monitored for particulate matter with diameter <2.5 microns (PM2.5) and radon concentrations. Low-cost air quality sensors and activated charcoal radon test kits were placed in tribal households for 6-8 days. A large amount of data were below the sensor limit of quantification (LOQ), but several homes had daily averages that exceeded suggested PM2.5 guidelines, suggestive of the potential for high exposure. Additionally, nearly half of all homes sampled had radon levels above the EPA action level, with mitigation activities initiated for the most concerning homes. Findings from this study indicate the need for future community-wide assessments to determine the magnitude and patterns of indoor air quality issues.


Asunto(s)
Contaminación del Aire Interior , Contaminación del Aire , Radón , Contaminación del Aire/análisis , Contaminación del Aire Interior/análisis , Vivienda , Material Particulado/efectos adversos , Radón/efectos adversos
6.
J Aerosol Sci ; 135: 21-32, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32773886

RESUMEN

Particulate matter (PM) has demonstrably increased rates of cardiovascular and respiratory related disease; thus, a low-cost sensor that accurately measures PM is desirable including for smaller and more private environments such as residential homes. The low-cost Dylos and the Utah Modified Dylos Sensor (UMDS) have been shown to be highly correlated with references instruments for measuring particle counts and aerosol concentrations, which makes them useful tools for air quality studies. An analytical calibration equation (calibration) is used to describe the linear relationship between the UMDS and a reference instrument, providing the best estimate of PM concentrations when the UMDS is operated. In this study, an investigation of measurement variation of a UMDS was performed using a low-cost calibration technique to determine differences between the brand new UMDS pre-calibration equation (Prec), a contaminated UMDS post-calibration equation (Postc), and a cleaned UMDS clean calibration equation (CC). The UMDS were calibrated against a high-grade aerosol spectrometer (Grimm model 1.109) as a reference instrument. Calibrations took place in a home or office environment. Counts per volume units from the UMDS were matched to the Grimm's for comparison. The investigation of the UMDS for measurement variation was performed for the approximate estimates of PM2.5 by using the small bin (i.e. ≥0.50µm) subtracted from the large bin (i.e. ≥2.5µm), and for total particulates by using the large bin. Linear regressions were performed between the UMDS and the Grimm per calibration event, which produced R2 values and slopes that were indicative of measurement variation. Data exceeding the upper limit of quantification (ULOQ) of 106,000 particles/liter and the lower limit of quantification (LLOQ) of 4 particles/liter were excluded from statistical comparison. R2 values greater or equal to 0.70 were used to assess measurement variation as a quality control standard for valid comparisons. A rank sum statistical test between calibration comparisons was performed. Prec/Postc and Prec/CC had significant differences indicating measurement variation. Postc/CC did not have any significant differences; cleaning the UMDS had no effect and did not demonstrate measurement variation. Reasons for measurement variation may include instrument contamination (dust/dirt), hardware degradation, altered fan flow rates, and potentially inadequate cleaning of the UMDS. Future work may investigate the rate of measurement variation in order to develop a recommended re-calibration schedule in order to maintain the most accurate estimates of PM for UMDS in long-term operation.

7.
J Occup Environ Hyg ; 15(7): 559-567, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29683781

RESUMEN

Exposure to occupational aerosols are a known hazard in many industry sectors and can be a risk factor for several respiratory diseases. In this study, a laboratory evaluation of low-cost aerosol sensors, the Dylos DC1700 and a modified Dylos known as the Utah Modified Dylos Sensor (UMDS), was performed to assess the sensors' efficiency in sampling respirable and inhalable dust at high concentrations, which are most common in occupational settings. Dust concentrations were measured in a low-speed wind tunnel with 3 UMDSs, collocated with an aerosol spectrometer (Grimm 1.109) and gravimetric respirable and inhalable samplers. A total of 10 tests consisting of 5 different concentrations and 2 test aerosols, Arizona road dust and aluminum oxide, were conducted. For the Arizona road dust, total particle count was strongly related between the spectrometer and the UMDS with a coefficient of determination (R2) between 0.86-0.92. Particle count concentrations measured with the UMDS were converted to mass and also were related with gravimetrically collected inhalable and respirable dust. The UMDS small bin (i.e., all particles) compared to the inhalable sampler yielded an R2 of 0.86-0.92, and the large bin subtracted from the small bin (i.e., only the smallest particles) compared to the respirable sampler yielded an R2 of 0.93-0.997. Tests with the aluminum oxide demonstrated a substantially lower relationship across all comparisons. Furthermore, assessment of intra-instrument variability was consistent for all instruments, but inter-instrument variability indicated that each instrument requires its own calibration equation to yield accurate exposure estimates. Overall, it appears that the UMDS can be used as a low-cost tool to estimate respirable and inhalable concentrations found in many workplaces. Future studies will focus on deployment of a UMDS network in an occupational setting.


Asunto(s)
Contaminantes Ocupacionales del Aire/análisis , Polvo/análisis , Monitoreo del Ambiente/instrumentación , Material Particulado/análisis , Óxido de Aluminio/análisis , Arizona , Monitoreo del Ambiente/métodos , Exposición Profesional/análisis , Tamaño de la Partícula
8.
Expert Opin Drug Metab Toxicol ; 13(9): 925-934, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28772091

RESUMEN

INTRODUCTION: When in flight, pilots of high performance aircraft experience conditions unique to their profession. Training flights, performed as often as several times a week, can expose these pilots to altitudes in excess of 15 km (~50,000 ft, with a cabin pressurized to an altitude of ~20,000 ft), and the maneuvers performed in flight can exacerbate the G-forces felt by the pilot. While the pilots specifically train to withstand these extreme conditions, the physiologic stress could very likely lead to differences in the disposition of chemicals in the body, and consequently, dangerously high exposures. Unfortunately, very little is known about how the conditions experienced by fighter pilots affects chemical disposition. Areas covered: The purpose of this review is to present information about the effects of high altitude, G-forces, and other conditions experienced by fighter pilots on chemical disposition. Using this information, the expected changes in chemical exposure will be discussed, using isopropyl alcohol as an example. Expert opinion: There is a severe lack of information concerning the effects of the fighter pilot environment on the pharmacokinetics and pharmacodynamics of chemicals. Given the possibility of exposure prior to or during flight, it is important that these potential effects be investigated further.


Asunto(s)
Altitud , Enfermedades Profesionales/fisiopatología , Pilotos , 2-Propanol/envenenamiento , Aeronaves , Animales , Gravitación , Humanos , Exposición Profesional/efectos adversos , Estrés Fisiológico/fisiología
9.
Artículo en Inglés | MEDLINE | ID: mdl-26959046

RESUMEN

Extrathoracic deposition of inhaled particles (i.e., in the head and throat) is an important exposure route for many hazardous materials. Current best practices for exposure assessment of aerosols in the workplace involve particle size selective sampling methods based on particle penetration into the human respiratory tract (i.e., inhalable or respirable sampling). However, the International Organization for Standardization (ISO) has recently adopted particle deposition sampling conventions (ISO 13138), including conventions for extrathoracic (ET) deposition into the anterior nasal passage (ET1) and the posterior nasal and oral passages (ET2). For this study, polyurethane foam was used as a collection substrate inside an inhalable aerosol sampler to provide an estimate of extrathoracic particle deposition. Aerosols of fused aluminum oxide (five sizes, 4.9 µm-44.3 µm) were used as a test dust in a low speed (0.2 m/s) wind tunnel. Samplers were placed on a rotating mannequin inside the wind tunnel to simulate orientation-averaged personal sampling. Collection efficiency data for the foam insert matched well to the extrathoracic deposition convention for the particle sizes tested. The concept of using a foam insert to match a particle deposition sampling convention was explored in this study and shows promise for future use as a sampling device.


Asunto(s)
Aerosoles/análisis , Contaminantes Ocupacionales del Aire/análisis , Monitoreo del Ambiente/métodos , Monitoreo del Ambiente/normas , Exposición por Inhalación/análisis , Exposición Profesional/análisis , Poliuretanos/análisis , Aerosoles/normas , Contaminantes Ocupacionales del Aire/normas , Humanos , Exposición por Inhalación/normas , Modelos Teóricos , Boca/fisiopatología , Cavidad Nasal/fisiopatología , National Academies of Science, Engineering, and Medicine, U.S., Health and Medicine Division , Exposición Profesional/normas , Tamaño de la Partícula , Poliuretanos/normas , Manejo de Especímenes/métodos , Estados Unidos
10.
J Occup Environ Hyg ; 13(4): 254-64, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26910856

RESUMEN

Biosafety level-2 laboratories are designated for work with human-derived samples or moderate-risk microorganisms that transmit primarily by direct contact exposures. Many laboratory procedures generate unseen droplets that contaminate workers' hands, equipment, and work surfaces. Workers' strict adherence to glove removal and handwashing is required prior to laboratory exit to prevent inadvertent transmission of pathogens to self or others. However, little is known about biosafety level-2 workers' compliance with these behaviors. In this article, glove removal and handwashing compliance upon laboratory exit were measured by direct observation of 93 biosafety level-2 research workers from 21 university laboratories. Participants completed a 41-item survey measuring social cognitive theory-based variables related to handwashing, self-reported compliance, and demographic factors. Survey items, observed exit frequency, and laboratory characteristics were evaluated for associations with handwashing compliance. Overall, observed glove removal and handwashing compliance upon laboratory exit were 43.0% (Standard Error [SE] = 2.3%), and 8.2% (SE = 1.2%), respectively, while workers' self-reported glove removal and handwashing compliance were 73.7% (SE = 3.6%) and 35.5% (SE = 4.1%), respectively. The average number of observed laboratory exits per hour was 2.8 for workers with any handwashing compliance vs. 5.4 for workers with no handwashing compliance (p = 0.0013). Among the cognitive variables, behavioral modeling by supervisors and coworkers had the strongest association with workers' compliance (slope = 3.5, SE = 1.3, p = 0.0113). Workers in laboratories with a written handwashing policy had higher compliance (Mean = 14.1%, SE = 5.9%) than workers in laboratories with no written policy (Mean = 1.1%, SE = 1.0%; p = 0.0488). Multi-faceted interventions that encourage modeling of the behavior by supervisors and coworkers, implementation of written handwashing policies, and efforts to reduce exit frequency by furnishing laboratories with necessary equipment and supplies may help improve compliance.


Asunto(s)
Guantes Protectores/estadística & datos numéricos , Adhesión a Directriz/estadística & datos numéricos , Desinfección de las Manos , Laboratorios , Exposición Profesional/prevención & control , Adulto , Transmisión de Enfermedad Infecciosa/prevención & control , Femenino , Humanos , Masculino , Percepción , Investigadores , Autoinforme , Utah
11.
J Occup Environ Hyg ; 12(11): 785-94, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26030088

RESUMEN

Residential temperature and humidity are associated with multiple health effects. Studies commonly use single-point measures to estimate indoor temperature and humidity exposures, but there is little evidence to support this sampling strategy. This study evaluated the relationship between single-point and continuous monitoring of air temperature, apparent temperature, relative humidity, and absolute humidity over four exposure intervals (5-min, 30-min, 24-hr, and 12-days) in 9 northern Utah homes, from March-June 2012. Three homes were sampled twice, for a total of 12 observation periods. Continuous data-logged sampling was conducted in homes for 2-3 wks, and simultaneous single-point measures (n = 114) were collected using handheld thermo-hygrometers. Time-centered single-point measures were moderately correlated with short-term (30-min) data logger mean air temperature (r = 0.76, ß = 0.74), apparent temperature (r = 0.79, ß = 0.79), relative humidity (r = 0.70, ß = 0.63), and absolute humidity (r = 0.80, ß = 0.80). Data logger 12-day means were also moderately correlated with single-point air temperature (r = 0.64, ß = 0.43) and apparent temperature (r = 0.64, ß = 0.44), but were weakly correlated with single-point relative humidity (r = 0.53, ß = 0.35) and absolute humidity (r = 0.52, ß = 0.39). Of the single-point RH measures, 59 (51.8%) deviated more than ±5%, 21 (18.4%) deviated more than ±10%, and 6 (5.3%) deviated more than ±15% from data logger 12-day means. Where continuous indoor monitoring is not feasible, single-point sampling strategies should include multiple measures collected at prescribed time points based on local conditions.


Asunto(s)
Monitoreo del Ambiente/instrumentación , Vivienda , Humedad , Temperatura , Reproducibilidad de los Resultados , Factores de Tiempo , Utah
12.
Environ Res ; 140: 345-53, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25913153

RESUMEN

BACKGROUND: Birth cohort studies provide the opportunity to advance understanding of the impact of environmental factors on childhood health and development through prospective collection of environmental samples. METHODS: We evaluated the feasibility and informative value of the environmental sample collection methodology in the initial pilot phase of the National Children's Study, a planned U.S. environmental birth cohort study. Environmental samples were collected from January 2009-September 2010 at up to three home visits: pre-pregnancy (n=306), pregnancy (n=807), and 6-months postnatal (n=117). Collections included air for particulate matter ≤2.5 µm (PM2.5), nitrogen dioxide, ozone, volatile organic compounds (VOCs), and carbonyls; vacuum dust for allergens/endotoxin; water for VOCs, trihalomethanes (THMs), and haloacetic acids (HAAs); and wipe samples for pesticides, semi-volatile organics, and metals. We characterized feasibility using sample collection rates and times and informative value using analyte detection frequencies (DF). RESULTS: Among the 1230 home visits, environmental sample collection rates were high across all sample types (mean=89%); all samples except the air PM2.5 samples had collection times <30 min. Informative value was low for water VOCs (median DF=0%) and pesticide floor wipes (median DF=5%). Informative value was moderate for air samples (median DF=35%) and high for water THMs and HAAs (median DF=91% and 75%, respectively). CONCLUSIONS: Though collection of environmental samples was feasible, some samples (e.g., wipe pesticides and water VOCs) yielded limited information. These results can be used in conjunction with other study design considerations, such as target population size and hypotheses of interest, to inform the method selection of future environmental health birth cohort studies.


Asunto(s)
Exposición a Riesgos Ambientales , Manejo de Especímenes , Estudios de Cohortes , Estudios de Factibilidad , Femenino , Humanos , Lactante , Exposición Materna , Embarazo
13.
J Environ Health ; 77(3): 22-8, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25603651

RESUMEN

Handheld temperature and relative humidity (T/RH) meters are commonly used in residential indoor air surveys. Although popular, T/RH meters are prone to sensor drift and consequent loss of accuracy, and thus instrument manufacturers often recommend annual calibration and adjustment. Field-use conditions, however, have been shown to accelerate electronic sensor drift in outdoor applications, resulting in out-of-tolerance measurements in less than one year. In the study described in this article, sensor drift was evaluated under residential field use for 30 handheld T/RH meters to predict needed calibration intervals based on hierarchical linear modeling. Instruments were used in 43 home visits over a 93-day period and were calibrated (without adjustment) 49 times over the study period with a laboratory standard. Analysis of covariance showed significant drift among temperature sensors for all three instrument types (p < .0001) and among humidity sensors in two instruments. The authors' study suggests calibration frequency should be based on instrument performance under specific sampling conditions rather than on predetermined time intervals.


Asunto(s)
Aire/análisis , Monitoreo del Ambiente/instrumentación , Vivienda , Humedad , Temperatura , Calibración , Modelos Lineales , Reproducibilidad de los Resultados , Factores de Tiempo
14.
J Occup Environ Hyg ; 4(11): 875-87, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17917951

RESUMEN

During mortar removal with a right angle grinder, a building renovation process known as "tuck pointing," worker exposures to respirable crystalline silica can be as high as 5 mg/m(3), 100 times the recommended exposure limit developed by the National Institute for Occupational Safety and Health. To reduce the risk of silicosis among these workers, a vacuum cleaner can be used to exhaust 80 ft(3)/min (2.26 m(3)/min) from a hood mounted on the grinder. Field trials examined the ability of vacuum cleaners to maintain adequate exhaust ventilation rates and measure exposure outcomes when using this engineering control. These field trials involved task-based exposure measurement of respirable dust and crystalline silica exposures during mortar removal. These measurements were compared with published exposure data. Vacuum cleaner airflows were obtained by measuring and digitally logging vacuum cleaner static pressure at the inlet to the vacuum cleaner motor. Static pressures were converted to airflows based on experimentally determined fan curves. In two cases, video exposure monitoring was conducted to study the relationship between worker activities and dust exposure. Worker activities were video taped concurrent with aerosol photometer measurement of dust exposure and vacuum cleaner static pressure as a measure of airflow. During these field trials, respirable crystalline silica exposures for 22 samples had a geometric mean of 0.06 mg/m(3) and a range of less than 0.01 to 0.86 mg/m(3). For three other studies, respirable crystalline silica exposures during mortar removal have a geometric means of 1.1 to 0.35. Although this field study documented noticeably less exposure to crystalline silica, video exposure monitoring found that the local exhaust ventilation provided incomplete dust control due to low exhaust flow rates, certain work practices, and missing mortar. Vacuum cleaner airflow decrease had a range of 3 to 0.4 ft(3)/min (0.08 to 0.01 m(3)/sec(2)) over a range of vacuum cleaners, hose diameters, and hose lengths. To control worker exposure to respirable crystalline silica, local exhaust ventilation needs to be incorporated into a comprehensive silica control program that includes respiratory protection, worker training, and local exhaust ventilation.


Asunto(s)
Aerosoles/análisis , Contaminantes Ocupacionales del Aire/análisis , Materiales de Construcción , Polvo/análisis , Exposición Profesional/análisis , Dióxido de Silicio/análisis , Ventilación , Aerosoles/toxicidad , Contaminantes Ocupacionales del Aire/toxicidad , Humanos , Exposición Profesional/efectos adversos , Salud Laboral , Medición de Riesgo , Dióxido de Silicio/toxicidad , Factores de Tiempo , Lugar de Trabajo
15.
J Occup Environ Hyg ; 2(1): 45-53, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15764523

RESUMEN

In cabin filtration systems, blower motors pressurize a vehicle cabin with clean filtered air and recirculate air through an air-conditioning evaporator coil and a heater core. The exposure reduction offered by these cabins is evaluated by optical particle counters that measure size-dependent aerosol concentration inside and outside the cabin. The ratio of the inside-to-outside concentration is termed penetration. Blower motors use stationary carbon brushes to transmit an electrical current through a rotating armature that abrades the carbon brushes. This creates airborne dust that may affect experimental evaluations of aerosol penetration. To evaluate the magnitude of these dust emissions, blower motors were placed in a test chamber and operated at 12 and 13.5 volts DC. A vacuum cleaner drew 76 m3/hour (45 cfm) of air through HEPA filters, the test chamber, and through a 5 cm diameter pipe. An optical particle counter drew air through an isokinetic sampling probe and measured the size-dependent particle concentrations from 0.3 to 15 microm. The concentration of blower motor aerosol was between 2 x 10(5) and 1.8 x 10(6) particles/m3. Aerosol penetration into three stationary vehicles, two pesticide application vehicles and one tractor were measured at two conditions: low concentration (outside in the winter) and high concentration (inside repair shops and burning incense sticks used as a supplemental aerosol source). For particles smaller than 1 microm, the in-cabin concentrations can be explained by the blower motor emissions. For particles larger than 1 microm, other aerosol sources, such as resuspended dirt, are present. Aerosol generated by the operation of the blower motor and by other sources can bias the exposure reduction measured by optical particle counters.


Asunto(s)
Aerosoles/análisis , Contaminación del Aire Interior/análisis , Vehículos a Motor , Agricultura , Filtración , Tamaño de la Partícula , Plaguicidas , Presión , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...