Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 66(15): 10658-10680, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37505188

RESUMEN

The Plasmodium falciparum aspartic protease plasmepsin X (PMX) is essential for the egress of invasive merozoite forms of the parasite. PMX has therefore emerged as a new potential antimalarial target. Building on peptidic amino alcohols originating from a phenotypic screening hit, we have here developed a series of macrocyclic analogues as PMX inhibitors. Incorporation of an extended linker between the S1 phenyl group and S3 amide led to a lead compound that displayed a 10-fold improved PMX inhibitory potency and a 3-fold improved half-life in microsomal stability assays compared to the acyclic analogue. The lead compound was also the most potent of the new macrocyclic compounds in in vitro parasite growth inhibition. Inhibitor 7k cleared blood-stage P. falciparum in a dose-dependent manner when administered orally to infected humanized mice. Consequently, lead compound 7k represents a promising orally bioavailable molecule for further development as a PMX-targeting antimalarial drug.


Asunto(s)
Antimaláricos , Peptidomiméticos , Ratones , Animales , Antimaláricos/farmacología , Antimaláricos/metabolismo , Peptidomiméticos/farmacología , Peptidomiméticos/metabolismo , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/metabolismo , Ácido Aspártico Endopeptidasas , Plasmodium falciparum/metabolismo , Proteínas Protozoarias
2.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33975947

RESUMEN

Malaria is a devastating infectious disease, which causes over 400,000 deaths per annum and impacts the lives of nearly half the world's population. The causative agent, a protozoan parasite, replicates within red blood cells (RBCs), eventually destroying the cells in a lytic process called egress to release a new generation of parasites. These invade fresh RBCs to repeat the cycle. Egress is regulated by an essential parasite subtilisin-like serine protease called SUB1. Here, we describe the development and optimization of substrate-based peptidic boronic acids that inhibit Plasmodium falciparum SUB1 with low nanomolar potency. Structural optimization generated membrane-permeable, slow off-rate inhibitors that prevent Pfalciparum egress through direct inhibition of SUB1 activity and block parasite replication in vitro at submicromolar concentrations. Our results validate SUB1 as a potential target for a new class of antimalarial drugs designed to prevent parasite replication and disease progression.


Asunto(s)
Antimaláricos/farmacología , Ácidos Borónicos/farmacología , Péptidos/farmacología , Plasmodium falciparum/efectos de los fármacos , Proteínas Protozoarias/química , Subtilisinas/química , Antimaláricos/síntesis química , Sitios de Unión , Ácidos Borónicos/síntesis química , Diseño de Fármacos , Eritrocitos/efectos de los fármacos , Eritrocitos/parasitología , Expresión Génica , Humanos , Cinética , Estadios del Ciclo de Vida/efectos de los fármacos , Estadios del Ciclo de Vida/fisiología , Modelos Moleculares , Simulación del Acoplamiento Molecular , Péptidos/síntesis química , Plasmodium falciparum/enzimología , Plasmodium falciparum/genética , Plasmodium falciparum/crecimiento & desarrollo , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato , Subtilisinas/antagonistas & inhibidores , Subtilisinas/genética , Subtilisinas/metabolismo , Termodinámica
3.
Elife ; 92020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33287958

RESUMEN

Red blood cell (RBC) invasion by malaria merozoites involves formation of a parasitophorous vacuole into which the parasite moves. The vacuole membrane seals and pinches off behind the parasite through an unknown mechanism, enclosing the parasite within the RBC. During invasion, several parasite surface proteins are shed by a membrane-bound protease called SUB2. Here we show that genetic depletion of SUB2 abolishes shedding of a range of parasite proteins, identifying previously unrecognized SUB2 substrates. Interaction of SUB2-null merozoites with RBCs leads to either abortive invasion with rapid RBC lysis, or successful entry but developmental arrest. Selective failure to shed the most abundant SUB2 substrate, MSP1, reduces intracellular replication, whilst conditional ablation of the substrate AMA1 produces host RBC lysis. We conclude that SUB2 activity is critical for host RBC membrane sealing following parasite internalisation and for correct functioning of merozoite surface proteins.


Malaria kills or disables hundreds of millions of people across the world, especially in developing economies. The most severe form of the disease is caused by Plasmodium falciparum, a single-cell parasite which, once inside a human host, forces its way into red blood cells to feed on a protein called haemoglobin. This invasion relies on P. falciparum being engulfed by the membrane of the red blood cell, which then seals off to form a compartment inside the cell where the parasite can feed and multiply. Invasion takes less than 30 seconds, and it involves P. falciparum losing the coat of proteins that covers its surface. An enzyme calls SUB2 cleaves or cuts off these proteins, but exactly why and how the shedding takes place during infection is still unclear. To investigate, Collins, Hackett et al. deactivated the gene which codes for SUB2, and examined how mutant P. falciparum would survive and multiply. Without the enzyme, the parasites failed to shed many of their proteins, including some that were not previously known to be removed by SUB2. The majority of the genetically modified parasites also failed to invade red blood cells. In particular, most of the host cells ruptured, suggesting that the protein coat needs to be discarded for the engulfing process to be completed properly. When the enzyme-free mutants did manage to make their way into a red blood cell, they starved to death because they could not digest haemoglobin. SUB2 and surface coat shedding therefore appears to be essential for the parasite to survive. P. falciparum is fast becoming resistant to the many drugs that exist to fight malaria. New treatments that target SUB2 may therefore help in combatting this deadly disease.


Asunto(s)
Plasmodium falciparum/enzimología , Proteínas Protozoarias/metabolismo , Eritrocitos , Eliminación de Gen , Humanos , Organismos Modificados Genéticamente , Especificidad por Sustrato
4.
PLoS One ; 13(12): e0207621, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30517136

RESUMEN

The malaria parasite replicates within erythrocytes. The pathogenesis of clinical malaria is in large part due to the capacity of the parasite to remodel its host cell. To do this, intraerythrocytic stages of Plasmodium falciparum export more than 300 proteins that dramatically alter the morphology of the infected erythrocyte as well as its mechanical and adhesive properties. P. falciparum plasmepsin V (PfPMV) is an aspartic protease that processes proteins for export into the host erythrocyte and is thought to play a key role in parasite virulence and survival. However, although standard techniques for gene disruption as well as conditional protein knockdown have been previously attempted with the pfpmv gene, complete gene removal or knockdown was not achieved so direct genetic proof that PMV is an essential protein has not been established. Here we have used a conditional gene excision approach combining CRISPR-Cas9 gene editing and DiCre-mediated recombination to functionally inactivate the pfpmv gene. The resulting mutant parasites displayed a severe growth defect. Detailed phenotypic analysis showed that development of the mutant parasites was arrested early in the ring-to-trophozoite transition in the erythrocytic cycle following gene excision. Our findings are the first to elucidate the effects of PMV gene disruption, showing that it is essential for parasite viability in asexual blood stages. The mutant parasites can now be used as a platform to further dissect the Plasmodium protein export pathway.


Asunto(s)
Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/fisiología , Plasmodium falciparum/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Sistemas CRISPR-Cas , Eritrocitos/metabolismo , Eritrocitos/parasitología , Regulación de la Expresión Génica , Humanos , Mutación/genética , Plasmodium falciparum/genética , Inhibidores de Proteasas , Procesamiento Proteico-Postraduccional , Proteínas Protozoarias/metabolismo
5.
mBio ; 9(4)2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29970464

RESUMEN

Apicomplexa are obligate intracellular parasites that actively invade, replicate within, and egress from host cells. The parasite actinomyosin-based molecular motor complex (often referred to as the glideosome) is considered an important mediator of parasite motility and virulence. Mature intracellular parasites often become motile just prior to egress from their host cells, and in some genera, this motility is important for successful egress as well as for subsequent invasion of new host cells. To determine whether actinomyosin-based motility is important in the red blood cell egress and invasion activities of the malaria parasite, we have used a conditional genetic approach to delete GAP45, a primary component of the glideosome, in asexual blood stages of Plasmodium falciparum Our results confirm the essential nature of GAP45 for invasion but show that P. falciparum does not require a functional motor complex to undergo egress from the red blood cell. Malarial egress therefore differs fundamentally from induced egress in the related apicomplexan Toxoplasma gondiiIMPORTANCE Clinical malaria results from cycles of replication of single-celled parasites of the genus Plasmodium in red blood cells. Intracellular parasite replication is followed by a highly regulated, protease-dependent process called egress, in which rupture of the bounding membranes allows explosive release of daughter merozoites which rapidly invade fresh red cells. A parasite actinomyosin-based molecular motor (the glideosome) has been proposed to provide the mechanical force to drive invasion. Studies of the related parasite Toxoplasma gondii have shown that induced egress requires parasite motility, mediated by a functional glideosome. However, whether the glideosome has a similar essential role in egress of malaria merozoites from red blood cells is unknown. Here, we show that although a functional glideosome is required for red blood cell invasion by Plasmodium falciparum merozoites, it is not required for egress. These findings place further emphasis on the key role of the protease cascade in malarial egress.


Asunto(s)
Endocitosis , Eritrocitos/parasitología , Proteínas de la Membrana/metabolismo , Plasmodium falciparum/fisiología , Eliminación de Gen , Proteínas de la Membrana/genética , Plasmodium falciparum/genética
6.
Science ; 358(6362): 522-528, 2017 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-29074775

RESUMEN

Regulated exocytosis by secretory organelles is important for malaria parasite invasion and egress. Many parasite effector proteins, including perforins, adhesins, and proteases, are extensively proteolytically processed both pre- and postexocytosis. Here we report the multistage antiplasmodial activity of the aspartic protease inhibitor hydroxyl-ethyl-amine-based scaffold compound 49c. This scaffold inhibits the preexocytosis processing of several secreted rhoptry and microneme proteins by targeting the corresponding maturases plasmepsins IX (PMIX) and X (PMX), respectively. Conditional excision of PMIX revealed its crucial role in invasion, and recombinantly active PMIX and PMX cleave egress and invasion factors in a 49c-sensitive manner.


Asunto(s)
Antimaláricos/farmacología , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Etilaminas/farmacología , Plasmodium falciparum/efectos de los fármacos , Animales , Antimaláricos/química , Antimaláricos/uso terapéutico , Modelos Animales de Enfermedad , Eritrocitos/parasitología , Etilaminas/química , Hígado/efectos de los fármacos , Hígado/parasitología , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Malaria Falciparum/transmisión , Ratones , Plasmodium falciparum/enzimología , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidad
7.
PLoS Pathog ; 13(7): e1006453, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28683142

RESUMEN

Egress of the malaria parasite Plasmodium falciparum from its host red blood cell is a rapid, highly regulated event that is essential for maintenance and completion of the parasite life cycle. Egress is protease-dependent and is temporally associated with extensive proteolytic modification of parasite proteins, including a family of papain-like proteins called SERA that are expressed in the parasite parasitophorous vacuole. Previous work has shown that the most abundant SERA, SERA5, plays an important but non-enzymatic role in asexual blood stages. SERA5 is extensively proteolytically processed by a parasite serine protease called SUB1 as well as an unidentified cysteine protease just prior to egress. However, neither the function of SERA5 nor the role of its processing is known. Here we show that conditional disruption of the SERA5 gene, or of both the SERA5 and related SERA4 genes simultaneously, results in a dramatic egress and replication defect characterised by premature host cell rupture and the failure of daughter merozoites to efficiently disseminate, instead being transiently retained within residual bounding membranes. SERA5 is not required for poration (permeabilization) or vesiculation of the host cell membrane at egress, but the premature rupture phenotype requires the activity of a parasite or host cell cysteine protease. Complementation of SERA5 null parasites by ectopic expression of wild-type SERA5 reversed the egress defect, whereas expression of a SERA5 mutant refractory to processing failed to rescue the phenotype. Our findings implicate SERA5 as an important regulator of the kinetics and efficiency of egress and suggest that proteolytic modification is required for SERA5 function. In addition, our study reveals that efficient egress requires tight control of the timing of membrane rupture.


Asunto(s)
Antígenos de Protozoos/metabolismo , Eritrocitos/parasitología , Malaria Falciparum/parasitología , Péptido Hidrolasas/metabolismo , Plasmodium falciparum/fisiología , Animales , Antígenos de Protozoos/genética , Membrana Celular/parasitología , Eritrocitos/química , Humanos , Cinética , Merozoítos/química , Merozoítos/genética , Merozoítos/crecimiento & desarrollo , Merozoítos/fisiología , Péptido Hidrolasas/genética , Plasmodium falciparum/química , Plasmodium falciparum/genética , Plasmodium falciparum/crecimiento & desarrollo , Proteolisis
8.
PLoS One ; 11(6): e0157873, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27332706

RESUMEN

Malaria is caused by an obligate intracellular protozoan parasite that replicates within and destroys erythrocytes. Asexual blood stages of the causative agent of the most virulent form of human malaria, Plasmodium falciparum, can be cultivated indefinitely in vitro in human erythrocytes, facilitating experimental analysis of parasite cell biology, biochemistry and genetics. However, efforts to improve understanding of the basic biology of this important pathogen and to develop urgently required new antimalarial drugs and vaccines, suffer from a paucity of basic research tools. This includes a simple means of quantifying the effects of drugs, antibodies and gene modifications on parasite fitness and replication rates. Here we describe the development and validation of an extremely simple, robust plaque assay that can be used to visualise parasite replication and resulting host erythrocyte destruction at the level of clonal parasite populations. We demonstrate applications of the plaque assay by using it for the phenotypic characterisation of two P. falciparum conditional mutants displaying reduced fitness in vitro.


Asunto(s)
Técnica de Placa Hemolítica/métodos , Malaria Falciparum/parasitología , Parásitos/aislamiento & purificación , Plasmodium falciparum/aislamiento & purificación , Animales , Eritrocitos/parasitología , Humanos , Estadios del Ciclo de Vida , Proteína 1 de Superficie de Merozoito/metabolismo , Mutación/genética , Fenotipo , Plasmodium falciparum/crecimiento & desarrollo
9.
Sci Rep ; 6: 21800, 2016 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-26892670

RESUMEN

Conditional genome engineering in the human malaria pathogen Plasmodium falciparum remains highly challenging. Here we describe a strategy for facile and rapid functional analysis of genes using an approach based on the Cre/lox system and tailored for organisms with short and few introns. Our method allows the conditional, site-specific removal of genomic sequences of essential and non-essential genes by placing loxP sites into a short synthetic intron to produce a module (loxPint) can be placed anywhere in open reading frames without compromising protein expression. When duplicated, the loxPint module serves as an intragenic recombineering point that can be used for the fusion of gene elements to reporters or the conditional introduction of point mutations. We demonstrate the robustness and versatility of the system by targeting the P. falciparum merozoite surface protein 1 gene (msp1), which has previously proven refractory to genetic interrogation, and the parasite exported kinase FIKK10.1.


Asunto(s)
Mutagénesis Sitio-Dirigida/métodos , Plasmodium falciparum/genética , Secuencia de Bases , Genoma de Protozoos , Integrasas/genética , Intrones
10.
Cell Host Microbe ; 18(4): 433-44, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26468747

RESUMEN

The malaria parasite Plasmodium falciparum replicates within erythrocytes, producing progeny merozoites that are released from infected cells via a poorly understood process called egress. The most abundant merozoite surface protein, MSP1, is synthesized as a large precursor that undergoes proteolytic maturation by the parasite protease SUB1 just prior to egress. The function of MSP1 and its processing are unknown. Here we show that SUB1-mediated processing of MSP1 is important for parasite viability. Processing modifies the secondary structure of MSP1 and activates its capacity to bind spectrin, a molecular scaffold protein that is the major component of the host erythrocyte cytoskeleton. Parasites expressing an inefficiently processed MSP1 mutant show delayed egress, and merozoites lacking surface-bound MSP1 display a severe egress defect. Our results indicate that interactions between SUB1-processed merozoite surface MSP1 and the spectrin network of the erythrocyte cytoskeleton facilitate host erythrocyte rupture to enable parasite egress.


Asunto(s)
Eritrocitos/parasitología , Proteína 1 de Superficie de Merozoito/metabolismo , Merozoítos/fisiología , Plasmodium falciparum/fisiología , Procesamiento Proteico-Postraduccional , Proteínas Protozoarias/metabolismo , Espectrina/metabolismo , Subtilisinas/metabolismo , Interacciones Huésped-Patógeno , Humanos , Proteína 1 de Superficie de Merozoito/química , Merozoítos/enzimología , Modelos Biológicos , Plasmodium falciparum/enzimología , Unión Proteica , Conformación Proteica , Proteolisis
11.
Mol Microbiol ; 96(2): 368-87, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25599609

RESUMEN

The malaria parasite Plasmodium falciparum replicates in an intraerythrocytic parasitophorous vacuole (PV). The most abundant P. falciparum PV protein, called SERA5, is essential in blood stages and possesses a papain-like domain, prompting speculation that it functions as a proteolytic enzyme. Unusually however, SERA5 possesses a Ser residue (Ser596) at the position of the canonical catalytic Cys of papain-like proteases, and the function of SERA5 or whether it performs an enzymatic role is unknown. In this study, we failed to detect proteolytic activity associated with the Ser596-containing parasite-derived or recombinant protein. However, substitution of Ser596 with a Cys residue produced an active recombinant enzyme with characteristics of a cysteine protease, demonstrating that SERA5 can bind peptides. Using targeted homologous recombination in P. falciparum, we substituted Ser596 with Ala with no phenotypic consequences, proving that SERA5 does not perform an essential enzymatic role in the parasite. We could also replace an internal segment of SERA5 with an affinity-purification tag. In contrast, using almost identical targeting constructs, we could not truncate or C-terminally tag the SERA5 gene, or replace Ser596 with a bulky Arg residue. Our findings show that SERA5 plays an indispensable but non-enzymatic role in the P. falciparum blood-stage life cycle.


Asunto(s)
Antígenos de Protozoos/metabolismo , Malaria Falciparum/parasitología , Péptido Hidrolasas/metabolismo , Plasmodium falciparum/crecimiento & desarrollo , Secuencias de Aminoácidos , Antígenos de Protozoos/química , Antígenos de Protozoos/genética , Humanos , Estadios del Ciclo de Vida , Malaria Falciparum/sangre , Péptido Hidrolasas/química , Péptido Hidrolasas/genética , Plasmodium falciparum/enzimología , Plasmodium falciparum/genética , Plasmodium falciparum/fisiología , Reproducción Asexuada
12.
Bio Protoc ; 4(5)2014 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-29075653

RESUMEN

Upon rupture of Plasmodium falciparum (P. falciparum) schizonts in vitro (an event known as egress), merozoites are released into the culture medium. The merozoites invade fresh red blood cells, a process that involves shedding of a microneme protein called apical membrane antigen-1 (AMA1) from the merozoite surface. This shedding, which takes place even in the absence of invasion, is therefore a surrogate marker for the degree of egress taking place in a culture, and can be measured using a specific capture ELISA to quantify AMA1 levels in culture supernatants (Collins et al., 2013). The assay uses a monoclonal antibody specific for AMA1 (called 4G2dc1) (Kocken et al., 1998; Collins et al., 2009) to capture and immobilize the protein from culture supernatants, then uses a specific rabbit polyclonal antiserum to detect the immobilized antigen. A phosphatase-conjugated goat anti-rabbit antibody is finally used to quantify the binding of the second antibody. Egress is absolutely dependent upon the activity of a parasite cGMP-dependent protein kinase, PKG, and so is influenced by levels of intracellular cGMP (Collins et al., 2013). This is regulated by the interplay between guanylate cyclases and phosphodiesterases. The latter enzymes may also degrade cAMP, so it may also be informative to measure intracellular cAMP levels.

13.
Traffic ; 14(10): 1053-64, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23834729

RESUMEN

The malaria merozoite invades erythrocytes in the vertebrate host. Iterative rounds of asexual intraerythrocytic replication result in disease. Proteases play pivotal roles in erythrocyte invasion, but little is understood about their mode of action. The Plasmodium falciparum malaria merozoite surface sheddase, PfSUB2, is one such poorly characterized example. We have examined the molecular determinants that underlie the mechanisms by which PfSUB2 is trafficked initially to invasion-associated apical organelles (micronemes) and then across the surface of the free merozoite. We show that authentic promoter activity is important for correct localization of PfSUB2, likely requiring canonical features within the intergenic region 5' of the pfsub2 locus. We further demonstrate that trafficking of PfSUB2 beyond an early compartment in the secretory pathway requires autocatalytic protease activity. Finally, we show that the PfSUB2 transmembrane domain is required for microneme targeting, while the cytoplasmic domain is essential for surface translocation of the protease to the parasite posterior following discharge from micronemes. The interplay of pre- and post-translational regulatory elements that coordinate subcellular trafficking of PfSUB2 provides the parasite with exquisite control over enzyme-substrate interactions.


Asunto(s)
Epítopos/metabolismo , Malaria Falciparum/metabolismo , Plasmodium falciparum/metabolismo , Transporte de Proteínas/fisiología , Proteínas Protozoarias/metabolismo , Subtilisinas/metabolismo , Epítopos/genética , Epítopos/inmunología , Eritrocitos/inmunología , Eritrocitos/metabolismo , Expresión Génica/genética , Expresión Génica/inmunología , Malaria Falciparum/genética , Malaria Falciparum/inmunología , Merozoítos/inmunología , Merozoítos/metabolismo , Péptido Hidrolasas/genética , Péptido Hidrolasas/inmunología , Péptido Hidrolasas/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/inmunología , Regiones Promotoras Genéticas/genética , Regiones Promotoras Genéticas/inmunología , Transporte de Proteínas/genética , Transporte de Proteínas/inmunología , Proteolisis , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , Subtilisinas/genética , Subtilisinas/inmunología
14.
PLoS Pathog ; 9(5): e1003344, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23675297

RESUMEN

The malaria parasite replicates within an intraerythrocytic parasitophorous vacuole (PV). Eventually, in a tightly regulated process called egress, proteins of the PV and intracellular merozoite surface are modified by an essential parasite serine protease called PfSUB1, whilst the enclosing PV and erythrocyte membranes rupture, releasing merozoites to invade fresh erythrocytes. Inhibition of the Plasmodium falciparum cGMP-dependent protein kinase (PfPKG) prevents egress, but the underlying mechanism is unknown. Here we show that PfPKG activity is required for PfSUB1 discharge into the PV, as well as for release of distinct merozoite organelles called micronemes. Stimulation of PfPKG by inhibiting parasite phosphodiesterase activity induces premature PfSUB1 discharge and egress of developmentally immature, non-invasive parasites. Our findings identify the signalling pathway that regulates PfSUB1 function and egress, and raise the possibility of targeting PfPKG or parasite phosphodiesterases in therapeutic approaches to dysregulate critical protease-mediated steps in the parasite life cycle.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Interacciones Huésped-Parásitos/fisiología , Merozoítos/fisiología , Plasmodium falciparum/fisiología , Proteínas Protozoarias/metabolismo , Transducción de Señal/fisiología , Ensayo de Inmunoadsorción Enzimática , Técnica del Anticuerpo Fluorescente , Orgánulos/metabolismo
15.
Mol Microbiol ; 88(4): 687-701, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23489321

RESUMEN

Asexual blood stages of the malaria parasite, which cause all the pathology associated with malaria, can readily be genetically modified by homologous recombination, enabling the functional study of parasite genes that are not essential in this part of the life cycle. However, no widely applicable method for conditional mutagenesis of essential asexual blood-stage malarial genes is available, hindering their functional analysis. We report the application of the DiCre conditional recombinase system to Plasmodium falciparum, the causative agent of the most dangerous form of malaria. We show that DiCre can be used to obtain rapid, highly regulated site-specific recombination in P. falciparum, capable of excising loxP-flanked sequences from a genomic locus with close to 100% efficiency within the time-span of a single erythrocytic growth cycle. DiCre-mediated deletion of the SERA5 3' UTR failed to reduce expression of the gene due to the existence of alternative cryptic polyadenylation sites within the modified locus. However, we successfully used the system to recycle the most widely used drug resistance marker for P. falciparum, human dihydrofolate reductase, in the process producing constitutively DiCre-expressing P. falciparum clones that have broad utility for the functional analysis of essential asexual blood-stage parasite genes.


Asunto(s)
Eliminación de Gen , Genética Microbiana/métodos , Integrasas/metabolismo , Biología Molecular/métodos , Parasitología/métodos , Plasmodium falciparum/genética , Expresión Génica , Genes Protozoarios , Integrasas/genética , Plasmodium falciparum/crecimiento & desarrollo , Recombinación Genética
16.
PLoS Pathog ; 7(12): e1002448, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22194692

RESUMEN

The malarial life cycle involves repeated rounds of intraerythrocytic replication interspersed by host cell rupture which releases merozoites that rapidly invade fresh erythrocytes. Apical membrane antigen-1 (AMA1) is a merozoite protein that plays a critical role in invasion. Antibodies against AMA1 prevent invasion and can protect against malaria in vivo, so AMA1 is of interest as a malaria vaccine candidate. AMA1 is efficiently shed from the invading parasite surface, predominantly through juxtamembrane cleavage by a membrane-bound protease called SUB2, but also by limited intramembrane cleavage. We have investigated the structural requirements for shedding of Plasmodium falciparum AMA1 (PfAMA1), and the consequences of its inhibition. Mutagenesis of the intramembrane cleavage site by targeted homologous recombination abolished intramembrane cleavage with no effect on parasite viability in vitro. Examination of PfSUB2-mediated shedding of episomally-expressed PfAMA1 revealed that the position of cleavage is determined primarily by its distance from the parasite membrane. Certain mutations at the PfSUB2 cleavage site block shedding, and parasites expressing these non-cleavable forms of PfAMA1 on a background of expression of the wild type gene invade and replicate normally in vitro. The non-cleavable PfAMA1 is also functional in invasion. However - in contrast to the intramembrane cleavage site - mutations that block PfSUB2-mediated shedding could not be stably introduced into the genomic pfama1 locus, indicating that some shedding of PfAMA1 by PfSUB2 is essential. Remarkably, parasites expressing shedding-resistant forms of PfAMA1 exhibit enhanced sensitivity to antibody-mediated inhibition of invasion. Drugs that inhibit PfSUB2 activity should block parasite replication and may also enhance the efficacy of vaccines based on AMA1 and other merozoite surface proteins.


Asunto(s)
Anticuerpos Antiprotozoarios/farmacología , Antígenos de Protozoos/inmunología , Proteínas de la Membrana/inmunología , Plasmodium falciparum/inmunología , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/farmacología , Antígenos de Protozoos/química , Antígenos de Protozoos/metabolismo , Recombinación Homóloga , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Mutación/genética , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo
17.
Cell Host Microbe ; 10(6): 531-3, 2011 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-22177557

RESUMEN

Host cell invasion by the malaria parasite is a crucial step in its life cycle. In this issue of Cell Host & Microbe, Giovannini et al. (2011) raise questions about the validity of a widely accepted model of the tight junction, a ring-like structure through which the invading parasite passes.

18.
Science ; 328(5980): 910-2, 2010 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-20466936

RESUMEN

Clinical malaria is associated with the proliferation of Plasmodium parasites in human erythrocytes. The coordinated processes of parasite egress from and invasion into erythrocytes are rapid and tightly regulated. We have found that the plant-like calcium-dependent protein kinase PfCDPK5, which is expressed in invasive merozoite forms of Plasmodium falciparum, was critical for egress. Parasites deficient in PfCDPK5 arrested as mature schizonts with intact membranes, despite normal maturation of egress proteases and invasion ligands. Merozoites physically released from stalled schizonts were capable of invading new erythrocytes, separating the pathways of egress and invasion. The arrest was downstream of cyclic guanosine monophosphate-dependent protein kinase (PfPKG) function and independent of protease processing. Thus, PfCDPK5 plays an essential role during the blood stage of malaria replication.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Eritrocitos/parasitología , Plasmodium falciparum/fisiología , Proteínas Quinasas/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/genética , Proteínas Quinasas Dependientes de GMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Inhibidores Enzimáticos/farmacología , Interacciones Huésped-Parásitos , Humanos , Ligandos , Merozoítos/enzimología , Merozoítos/fisiología , Modelos Biológicos , Morfolinas/metabolismo , Plasmodium falciparum/citología , Plasmodium falciparum/enzimología , Plasmodium falciparum/crecimiento & desarrollo , Proteínas Quinasas/química , Proteínas Quinasas/genética , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Piridinas/farmacología , Pirroles/farmacología , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Esquizontes/citología , Esquizontes/enzimología , Esquizontes/fisiología
19.
PLoS Pathog ; 5(1): e1000273, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19165323

RESUMEN

Host cell invasion by apicomplexan pathogens such as the malaria parasite Plasmodium spp. and Toxoplasma gondii involves discharge of proteins from secretory organelles called micronemes and rhoptries. In Toxoplasma a protein complex comprising the microneme apical membrane antigen 1 (AMA1), two rhoptry neck proteins, and a protein called Ts4705, localises to the moving junction, a region of close apposition between parasite and host cell during invasion. Antibodies against AMA1 prevent invasion and are protective in vivo, and so AMA1 is of widespread interest as a malaria vaccine candidate. Here we report that the AMA1 complex identified in Toxoplasma is conserved in Plasmodium falciparum. We demonstrate that the invasion-inhibitory monoclonal antibody (mAb) 4G2, which recognises P. falciparum AMA1 (PfAMA1), cannot bind when PfAMA1 is in a complex with its partner proteins. We further show that a single completely conserved PfAMA1 residue, Tyr251, lying within a conserved hydrophobic groove adjacent to the mAb 4G2 epitope, is required for complex formation. We propose that mAb 4G2 inhibits invasion by preventing PfAMA1 from interacting with other components of the invasion complex. Our findings should aid the rational design of subunit malaria vaccines based on PfAMA1.


Asunto(s)
Antígenos de Protozoos/inmunología , Plasmodium falciparum/patogenicidad , Toxoplasma/patogenicidad , Secuencia de Aminoácidos , Animales , Antígenos de Protozoos/fisiología , Malaria/inmunología , Vacunas contra la Malaria/inmunología , Plasmodium falciparum/inmunología , Toxoplasma/inmunología , Tirosina/fisiología
20.
J Biol Chem ; 282(10): 7431-41, 2007 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-17192270

RESUMEN

Antibodies that inhibit red blood cell invasion by the Plasmodium merozoite block the erythrocytic cycle responsible for clinical malaria. The invasion-inhibitory monoclonal antibody (mAb) 4G2 recognizes a conserved epitope in the ectodomain of the essential Plasmodium falciparum microneme protein and vaccine candidate, apical membrane antigen 1 (PfAMA1). Here we demonstrate that purified Fab fragments of 4G2 inhibit invasion markedly more efficiently than the intact mAb, suggesting that the invasion-inhibitory activity of this mAb is not due solely to steric effects and that the epitope lies within a functionally critical region of the molecule. We have taken advantage of a synthetic gene encoding a modified form of PfAMA1, and existing x-ray crystal structure data, to fully characterize this epitope. We first validate the gene by demonstrating that it fully complements the function of the authentic gene in P. falciparum. We then use it to identify a group of residues within the previously described domain II loop of PfAMA1 that are critical for recognition by mAb 4G2 and demonstrate that the epitope lies exclusively within this loop with no contributions from residues in other domains of the molecule. This is the first complete characterization of a conserved invasion-inhibitory epitope on PfAMA1. Our results will aid in the design of subunit vaccines designed to generate a broadly effective, focused anti-PfAMA1 protective immune response and may help elucidate the function of PfAMA1.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Antígenos de Protozoos/inmunología , Mapeo Epitopo , Vacunas contra la Malaria/inmunología , Proteínas de la Membrana/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Animales , Antígenos de Protozoos/química , Antígenos de Protozoos/genética , Células COS , Chlorocebus aethiops , Eritrocitos/parasitología , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Ratones , Proteínas Protozoarias/química , Proteínas Protozoarias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA