Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Data ; 11(1): 420, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653999

RESUMEN

Wheat (Triticum aestivum) is one of the most important food crops with an urgent need for increase in its production to feed the growing world. Triticum timopheevii (2n = 4x = 28) is an allotetraploid wheat wild relative species containing the At and G genomes that has been exploited in many pre-breeding programmes for wheat improvement. In this study, we report the generation of a chromosome-scale reference genome assembly of T. timopheevii accession PI 94760 based on PacBio HiFi reads and chromosome conformation capture (Hi-C). The assembly comprised a total size of 9.35 Gb, featuring a contig N50 of 42.4 Mb and included the mitochondrial and plastid genome sequences. Genome annotation predicted 166,325 gene models including 70,365 genes with high confidence. DNA methylation analysis showed that the G genome had on average more methylated bases than the At genome. In summary, the T. timopheevii genome assembly provides a valuable resource for genome-informed discovery of agronomically important genes for food security.


Asunto(s)
Cromosomas de las Plantas , Genoma de Planta , Triticum , Triticum/genética , Cromosomas de las Plantas/genética , Metilación de ADN
3.
Wellcome Open Res ; 8: 507, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38046191

RESUMEN

We present a genome assembly from an individual male Anopheles moucheti (the malaria mosquito; Arthropoda; Insecta; Diptera; Culicidae), from a wild population in Cameroon. The genome sequence is 271 megabases in span. The majority of the assembly is scaffolded into three chromosomal pseudomolecules with the X sex chromosome assembled. The complete mitochondrial genome was also assembled and is 15.5 kilobases in length.

4.
Nat Commun ; 14(1): 6364, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848431

RESUMEN

Combining genome assembly with population and functional genomics can provide valuable insights to development and evolution, as well as tools for species management. Here, we present a chromosome-level genome assembly of the common brushtail possum (Trichosurus vulpecula), a model marsupial threatened in parts of their native range in Australia, but also a major introduced pest in New Zealand. Functional genomics reveals post-natal activation of chemosensory and metabolic genes, reflecting unique adaptations to altricial birth and delayed weaning, a hallmark of marsupial development. Nuclear and mitochondrial analyses trace New Zealand possums to distinct Australian subspecies, which have subsequently hybridised. This admixture allowed phasing of parental alleles genome-wide, ultimately revealing at least four genes with imprinted, parent-specific expression not yet detected in other species (MLH1, EPM2AIP1, UBP1 and GPX7). We find that reprogramming of possum germline imprints, and the wider epigenome, is similar to eutherian mammals except onset occurs after birth. Together, this work is useful for genetic-based control and conservation of possums, and contributes to understanding of the evolution of novel mammalian epigenetic traits.


Asunto(s)
Marsupiales , Animales , Australia , Nueva Zelanda/epidemiología
5.
Genome Biol Evol ; 15(8)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37590950

RESUMEN

Amidst the current biodiversity crisis, the availability of genomic resources for declining species can provide important insights into the factors driving population decline. In the early 1990s, the black-legged kittiwake (Rissa tridactyla), a pelagic gull widely distributed across the arctic, subarctic, and temperate zones, suffered a steep population decline following an abrupt warming of sea surface temperature across its distribution range and is currently listed as Vulnerable by the International Union for the Conservation of Nature. Kittiwakes have long been the focus for field studies of physiology, ecology, and ecotoxicology and are primary indicators of fluctuating ecological conditions in arctic and subarctic marine ecosystems. We present a high-quality chromosome-level reference genome and annotation for the black-legged kittiwake using a combination of Pacific Biosciences HiFi sequencing, Bionano optical maps, Hi-C reads, and RNA-Seq data. The final assembly spans 1.35 Gb across 32 chromosomes, with a scaffold N50 of 88.21 Mb and a BUSCO completeness of 97.4%. This genome assembly substantially improves the quality of a previous draft genome, showing an approximately 5× increase in contiguity and a more complete annotation. Using this new chromosome-level reference genome and three more chromosome-level assemblies of Charadriiformes, we uncover several lineage-specific chromosome fusions and fissions, but find no shared rearrangements, suggesting that interchromosomal rearrangements have been commonplace throughout the diversification of Charadriiformes. This new high-quality genome assembly will enable population genomic, transcriptomic, and phenotype-genotype association studies in a widely studied sentinel species, which may provide important insights into the impacts of global change on marine systems.


Asunto(s)
Charadriiformes , Animales , Charadriiformes/genética , Ecosistema , Reordenamiento Génico , Genómica , Cromosomas/genética
6.
Wellcome Open Res ; 8: 74, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37424773

RESUMEN

We present a genome assembly from an individual female Anopheles gambiae (the malaria mosquito; Arthropoda; Insecta; Diptera; Culicidae), Ifakara strain. The genome sequence is 264 megabases in span. Most of the assembly is scaffolded into three chromosomal pseudomolecules with the X sex chromosome assembled. The complete mitochondrial genome was also assembled and is 15.4 kilobases in length.

7.
bioRxiv ; 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37425881

RESUMEN

Improvements in genome sequencing and assembly are enabling high-quality reference genomes for all species. However, the assembly process is still laborious, computationally and technically demanding, lacks standards for reproducibility, and is not readily scalable. Here we present the latest Vertebrate Genomes Project assembly pipeline and demonstrate that it delivers high-quality reference genomes at scale across a set of vertebrate species arising over the last ~500 million years. The pipeline is versatile and combines PacBio HiFi long-reads and Hi-C-based haplotype phasing in a new graph-based paradigm. Standardized quality control is performed automatically to troubleshoot assembly issues and assess biological complexities. We make the pipeline freely accessible through Galaxy, accommodating researchers even without local computational resources and enhanced reproducibility by democratizing the training and assembly process. We demonstrate the flexibility and reliability of the pipeline by assembling reference genomes for 51 vertebrate species from major taxonomic groups (fish, amphibians, reptiles, birds, and mammals).

8.
Cell Rep ; 42(1): 111992, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36662619

RESUMEN

Insights into the evolution of non-model organisms are limited by the lack of reference genomes of high accuracy, completeness, and contiguity. Here, we present a chromosome-level, karyotype-validated reference genome and pangenome for the barn swallow (Hirundo rustica). We complement these resources with a reference-free multialignment of the reference genome with other bird genomes and with the most comprehensive catalog of genetic markers for the barn swallow. We identify potentially conserved and accelerated genes using the multialignment and estimate genome-wide linkage disequilibrium using the catalog. We use the pangenome to infer core and accessory genes and to detect variants using it as a reference. Overall, these resources will foster population genomics studies in the barn swallow, enable detection of candidate genes in comparative genomics studies, and help reduce bias toward a single reference genome.


Asunto(s)
Golondrinas , Animales , Golondrinas/genética , Metagenómica , Genoma/genética , Genómica , Cromosomas
9.
Nature ; 611(7936): 519-531, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36261518

RESUMEN

The current human reference genome, GRCh38, represents over 20 years of effort to generate a high-quality assembly, which has benefitted society1,2. However, it still has many gaps and errors, and does not represent a biological genome as it is a blend of multiple individuals3,4. Recently, a high-quality telomere-to-telomere reference, CHM13, was generated with the latest long-read technologies, but it was derived from a hydatidiform mole cell line with a nearly homozygous genome5. To address these limitations, the Human Pangenome Reference Consortium formed with the goal of creating high-quality, cost-effective, diploid genome assemblies for a pangenome reference that represents human genetic diversity6. Here, in our first scientific report, we determined which combination of current genome sequencing and assembly approaches yield the most complete and accurate diploid genome assembly with minimal manual curation. Approaches that used highly accurate long reads and parent-child data with graph-based haplotype phasing during assembly outperformed those that did not. Developing a combination of the top-performing methods, we generated our first high-quality diploid reference assembly, containing only approximately four gaps per chromosome on average, with most chromosomes within ±1% of the length of CHM13. Nearly 48% of protein-coding genes have non-synonymous amino acid changes between haplotypes, and centromeric regions showed the highest diversity. Our findings serve as a foundation for assembling near-complete diploid human genomes at scale for a pangenome reference to capture global genetic variation from single nucleotides to structural rearrangements.


Asunto(s)
Mapeo Cromosómico , Diploidia , Genoma Humano , Genómica , Humanos , Mapeo Cromosómico/normas , Genoma Humano/genética , Haplotipos/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Análisis de Secuencia de ADN/métodos , Análisis de Secuencia de ADN/normas , Estándares de Referencia , Genómica/métodos , Genómica/normas , Cromosomas Humanos/genética , Variación Genética/genética
10.
J Affect Disord ; 309: 172-177, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35487437

RESUMEN

BACKGROUND: This study evaluated associations of PE with symptomatic status in mood and anxiety disorder subjects, and considered many other associated factors so as to expand on comparable previous studies. METHODS: Consenting adults at a mood disorder center were assessed for associations of PE frequency ([never, past only, ≤once/week] vs. regularly at 2-3- or >3-times/week) with standard psychometric measures of depression and anxiety symptoms, selected demographic, clinical factors, using bivariate and multivariate methods. RESULTS: Of 2190 subjects (58.8% women; mean age 42.6 years; 44.8% with major depressive, 40.6% bipolar, and 14.6% anxiety disorders), 22.5% currently engaged in regular PE. Such engagement was associated with lower morbidity ratings, youth, male sex, being unmarried, more education, higher socio-economic status (SES), less religious practice, less early abuse, younger age at illness onset and at intake, fewer years ill, lower BMI, fewer siblings, hyperthymic temperament, less time depressed before intake, and living at higher population density. Greater PE-frequency was associated with lower ratings of depression (but not anxiety), male sex, younger age, and lower BMI. Factors independently associated with PE in multivariate modeling ranked by significance: older age at intake ≥ lower BMI > more education > higher SES > male sex. LIMITATIONS: PE assessment did not include type, intensity or duration. Some information provided may be subject to recall bias, though it should not affect comparisons among subjects. CONCLUSION: Regularly repeated PE again appeared to be beneficial for patients with depression or anxiety and should be included in their treatment interventions.


Asunto(s)
Trastorno Bipolar , Trastorno Depresivo Mayor , Adolescente , Adulto , Ansiedad/epidemiología , Trastornos de Ansiedad/epidemiología , Trastornos de Ansiedad/psicología , Trastorno Bipolar/psicología , Depresión/epidemiología , Trastorno Depresivo Mayor/epidemiología , Trastorno Depresivo Mayor/psicología , Ejercicio Físico , Femenino , Humanos , Masculino , Trastornos del Humor/epidemiología
11.
Mar Biotechnol (NY) ; 24(3): 655-660, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35394576

RESUMEN

The yellowfin seabream, Acanthopagrus latus, is widely distributed throughout the Indo-West Pacific. This species, as a euryhaline Sparidae fish, inhabits in coastal environments with large and frequent salinity fluctuation. So the A. latus can be considered as an ideal species for elucidating the evolutionary mechanism of salinity stress adaption on teleost fish species. Here, a chromosome-scale assembly of A. latus was obtained with PacBio and Hi-C hybrid sequencing strategy. The final assembly genome of A. latus is 685.14 Mbp. The values of contig N50 and scaffold N50 are 14.88 Mbp and 30.72 Mbp, respectively. 29,227 genes were successfully predicted for A. latus in total. Then, the comparative genomics and phylogenetic analysis were employed for investigating the different osmoregulation strategies of salinity stress adaption on multiple whole genome scale of Sparidae species. The highly accurate chromosomal information provides the important genome resources for understanding the osmoregulation evolutionary pattern of the euryhaline Sparidae species.


Asunto(s)
Perciformes , Dorada , Animales , Cromosomas/genética , Perciformes/genética , Filogenia , Estrés Salino , Dorada/genética
12.
Wellcome Open Res ; 7: 287, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36874567

RESUMEN

We present a genome assembly from an individual female Anopheles funestus (the malaria mosquito; Arthropoda; Insecta; Diptera; Culicidae). The genome sequence is 251 megabases in span. The majority of the assembly is scaffolded into three chromosomal pseudomolecules with the X sex chromosome assembled. The complete mitochondrial genome was also assembled and is 15.4 kilobases in length.

13.
Br J Surg ; 109(2): 178-181, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34915565

RESUMEN

Sample size calculations from high-profile surgical RCTs that used a patient-reported outcome measure as primary outcome were reviewed systematically against Difference ELicitation in TriAls (DELTA2) standards, with a focus on target differences. In this sample of trials, there was frequent use of suboptimal methods to determine the target difference, and sample size calculations were generally not reported to DELTA2 standards. This risks over-recruitment and/or erroneous trial conclusions, which clinicians should be aware of when interpreting published trials.


Asunto(s)
Medición de Resultados Informados por el Paciente , Ensayos Clínicos Controlados Aleatorios como Asunto/métodos , Ensayos Clínicos Controlados Aleatorios como Asunto/normas , Tamaño de la Muestra , Procedimientos Quirúrgicos Operativos , Estudios de Equivalencia como Asunto , Humanos , Ensayos Clínicos Controlados Aleatorios como Asunto/economía , Ensayos Clínicos Controlados Aleatorios como Asunto/estadística & datos numéricos , Apoyo a la Investigación como Asunto
14.
Wellcome Open Res ; 6: 112, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34671705

RESUMEN

We present a genome assembly from an individual female Aquila chrysaetos chrysaetos (the European golden eagle; Chordata; Aves; Accipitridae). The genome sequence is 1.23 gigabases in span. The majority of the assembly is scaffolded into 28 chromosomal pseudomolecules, including the W and Z sex chromosomes.

15.
Mol Ecol Resour ; 21(7): 2455-2470, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34097816

RESUMEN

With the advent of chromatin-interaction maps, chromosome-level genome assemblies have become a reality for a wide range of organisms. Scaffolding quality is, however, difficult to judge. To explore this gap, we generated multiple chromosome-scale genome assemblies of an emerging wild animal model for carcinogenesis, the California sea lion (Zalophus californianus). Short-read assemblies were scaffolded with two independent chromatin interaction mapping data sets (Hi-C and Chicago), and long-read assemblies with three data types (Hi-C, optical maps and 10X linked reads) following the "Vertebrate Genomes Project (VGP)" pipeline. In both approaches, 18 major scaffolds recovered the karyotype (2n = 36), with scaffold N50s of 138 and 147 Mb, respectively. Synteny relationships at the chromosome level with other pinniped genomes (2n = 32-36), ferret (2n = 34), red panda (2n = 36) and domestic dog (2n = 78) were consistent across approaches and recovered known fissions and fusions. Comparative chromosome painting and multicolour chromosome tiling with a panel of 264 genome-integrated single-locus canine bacterial artificial chromosome probes provided independent evaluation of genome organization. Broad-scale discrepancies between the approaches were observed within chromosomes, most commonly in translocations centred around centromeres and telomeres, which were better resolved in the VGP assembly. Genomic and cytological approaches agreed on near-perfect synteny of the X chromosome, and in combination allowed detailed investigation of autosomal rearrangements between dog and sea lion. This study presents high-quality genomes of an emerging cancer model and highlights that even highly fragmented short-read assemblies scaffolded with Hi-C can yield reliable chromosome-level scaffolds suitable for comparative genomic analyses.


Asunto(s)
Leones Marinos , Animales , Perros , Hurones , Genoma , Leones Marinos/genética , Sintenía , Cromosoma X
16.
Gigascience ; 10(1)2021 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-33420778

RESUMEN

Genome sequence assemblies provide the basis for our understanding of biology. Generating error-free assemblies is therefore the ultimate, but sadly still unachieved goal of a multitude of research projects. Despite the ever-advancing improvements in data generation, assembly algorithms and pipelines, no automated approach has so far reliably generated near error-free genome assemblies for eukaryotes. Whilst working towards improved datasets and fully automated pipelines, assembly evaluation and curation is actively used to bridge this shortcoming and significantly reduce the number of assembly errors. In addition to this increase in product value, the insights gained from assembly curation are fed back into the automated assembly strategy and contribute to notable improvements in genome assembly quality. We describe our tried and tested approach for assembly curation using gEVAL, the genome evaluation browser. We outline the procedures applied to genome curation using gEVAL and also our recommendations for assembly curation in a gEVAL-independent context to facilitate the uptake of genome curation in the wider community.


Asunto(s)
Genoma , Genómica , Algoritmos , Eucariontes , Programas Informáticos
17.
Genome Biol ; 20(1): 207, 2019 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-31610793

RESUMEN

BACKGROUND: Large palindromes (inverted repeats) make up substantial proportions of mammalian sex chromosomes, often contain genes, and have high rates of structural variation arising via ectopic recombination. As a result, they underlie many genomic disorders. Maintenance of the palindromic structure by gene conversion between the arms has been documented, but over longer time periods, palindromes are remarkably labile. Mechanisms of origin and loss of palindromes have, however, received little attention. RESULTS: Here, we use fiber-FISH, 10x Genomics Linked-Read sequencing, and breakpoint PCR sequencing to characterize the structural variation of the P8 palindrome on the human Y chromosome, which contains two copies of the VCY (Variable Charge Y) gene. We find a deletion of almost an entire arm of the palindrome, leading to death of the palindrome, a size increase by recruitment of adjacent sequence, and other complex changes including the formation of an entire new palindrome nearby. Together, these changes are found in ~ 1% of men, and we can assign likely molecular mechanisms to these mutational events. As a result, healthy men can have 1-4 copies of VCY. CONCLUSIONS: Gross changes, especially duplications, in palindrome structure can be relatively frequent and facilitate the evolution of sex chromosomes in humans, and potentially also in other mammalian species.


Asunto(s)
Cromosomas Humanos Y , Secuencias Invertidas Repetidas , Proteínas Nucleares/genética , Secuencia de Bases , Variaciones en el Número de Copia de ADN , Humanos
18.
Nat Genet ; 50(11): 1574-1583, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30275530

RESUMEN

We report full-length draft de novo genome assemblies for 16 widely used inbred mouse strains and find extensive strain-specific haplotype variation. We identify and characterize 2,567 regions on the current mouse reference genome exhibiting the greatest sequence diversity. These regions are enriched for genes involved in pathogen defence and immunity and exhibit enrichment of transposable elements and signatures of recent retrotransposition events. Combinations of alleles and genes unique to an individual strain are commonly observed at these loci, reflecting distinct strain phenotypes. We used these genomes to improve the mouse reference genome, resulting in the completion of 10 new gene structures. Also, 62 new coding loci were added to the reference genome annotation. These genomes identified a large, previously unannotated, gene (Efcab3-like) encoding 5,874 amino acids. Mutant Efcab3-like mice display anomalies in multiple brain regions, suggesting a possible role for this gene in the regulation of brain development.


Asunto(s)
Mapeo Cromosómico , Sitios Genéticos , Genoma , Haplotipos , Ratones Endogámicos/genética , Animales , Animales de Laboratorio , Mapeo Cromosómico/veterinaria , Haplotipos/genética , Ratones , Ratones Endogámicos BALB C/genética , Ratones Endogámicos C3H/genética , Ratones Endogámicos C57BL/genética , Ratones Endogámicos CBA/genética , Ratones Endogámicos DBA/genética , Ratones Endogámicos NOD/genética , Ratones Endogámicos/clasificación , Anotación de Secuencia Molecular , Filogenia , Polimorfismo de Nucleótido Simple , Especificidad de la Especie
19.
Genome Res ; 27(5): 849-864, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28396521

RESUMEN

The human reference genome assembly plays a central role in nearly all aspects of today's basic and clinical research. GRCh38 is the first coordinate-changing assembly update since 2009; it reflects the resolution of roughly 1000 issues and encompasses modifications ranging from thousands of single base changes to megabase-scale path reorganizations, gap closures, and localization of previously orphaned sequences. We developed a new approach to sequence generation for targeted base updates and used data from new genome mapping technologies and single haplotype resources to identify and resolve larger assembly issues. For the first time, the reference assembly contains sequence-based representations for the centromeres. We also expanded the number of alternate loci to create a reference that provides a more robust representation of human population variation. We demonstrate that the updates render the reference an improved annotation substrate, alter read alignments in unchanged regions, and impact variant interpretation at clinically relevant loci. We additionally evaluated a collection of new de novo long-read haploid assemblies and conclude that although the new assemblies compare favorably to the reference with respect to continuity, error rate, and gene completeness, the reference still provides the best representation for complex genomic regions and coding sequences. We assert that the collected updates in GRCh38 make the newer assembly a more robust substrate for comprehensive analyses that will promote our understanding of human biology and advance our efforts to improve health.


Asunto(s)
Mapeo Contig/métodos , Genoma Humano , Genómica/métodos , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Mapeo Contig/normas , Genómica/normas , Haploidia , Haplotipos , Humanos , Polimorfismo Genético , Estándares de Referencia , Análisis de Secuencia de ADN/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA