Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Aging Cell ; : e14155, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38529808

RESUMEN

Parkinson's disease (PD) is characterised by progressive loss of dopaminergic (DA) neurons from the substantia nigra (SN) and α-synuclein (αSyn) accumulation. Age is the biggest risk factor for PD and may create a vulnerable pre-parkinsonian state, but the drivers of this association are unclear. It is known that ageing increases αSyn expression in DA neurons and that this may alter molecular processes that are central to maintaining nigrostriatal integrity. To model this, adult female Sprague-Dawley rats received a unilateral intranigral injection of adeno-associated viral (AAV) vector carrying wild-type human αSyn (AAV-αSyn) or control vector (AAV-Null). AAV-αSyn induced no detrimental effects on motor behaviour, but there was expression of human wild-type αSyn throughout the midbrain and ipsilateral striatum at 20 weeks post-surgery. Microarray analysis revealed that the gene most-upregulated in the ipsilateral SN of the AAV-αSyn group was the SKI Family Transcriptional Corepressor 1 (SKOR1). Bioenergetic state analysis of mitochondrial function found that SKOR1 overexpression reduced the maximum rate of cellular respiration in SH-SY5Y cells. Furthermore, experiments in SH-SY5Y cells revealed that SKOR1 overexpression impaired neurite growth to the same extent as αSyn, and inhibited BMP-SMAD-dependent transcription, a pathway that promotes DA neuronal survival and growth. Given the normal influence of ageing on DA neuron loss in human SN, the extent of αSyn-induced SKOR1 expression may influence whether an individual undergoes normal nigrostriatal ageing or reaches a threshold for prodromal PD. This provides new insight into mechanisms through which ageing-related increases in αSyn may influence molecular mechanisms important for the maintenance of neuronal integrity.

3.
J Chem Neuroanat ; 131: 102288, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37178741

RESUMEN

Adenosine 5'-triphosphate (ATP) is the principal source of cellular energy, which is essential for neuronal health and maintenance. Parkinson's disease (PD) and other neurodegenerative disorders are characterised by impairments in mitochondrial function and reductions in cellular ATP levels. Thus there is a need to better understand the biology of intracellular regulators of ATP production, in order to inform the development of new neuroprotective therapies for diseases such as PD. One such regulator is Zinc finger HIT-domain containing protein 1 (ZNHIT1). ZNHIT1 is an evolutionarily-conserved component of a chromatin-remodelling complex, which has been recently shown to increase cellular ATP production in SH-SY5Y cells and to protect against impairments in mitochondrial function caused by alpha-synuclein, a protein which is integral to PD pathophysiology. This effect of ZNHIT1 on cellular ATP production is thought to be due to increased expression of genes associated with mitochondrial function, but it is also possible that ZNHIT1 regulates mitochondrial function by binding to mitochondrial proteins. To examine this question, we performed a combined proteomics and bioinformatics analysis to identify ZNHIT1-interacting proteins in SH-SY5Y cells. We report that ZNHIT1-interacting proteins are significantly enriched in multiple functional categories, including mitochondrial transport, ATP synthesis and ATP-dependent activity. Furthermore we also report that the correlation between ZNHIT1 and dopaminergic markers is reduced in the PD brain. These data suggest that the reported beneficial effects of ZNHIT1 on ATP production may be mediated, at least in part, by its direct interaction with mitochondrial proteins and suggest that potential alterations in ZNHIT1 in PD may contribute to the known impairments in ATP generation in midbrain dopaminergic neurons in PD.


Asunto(s)
Neuroblastoma , Enfermedad de Parkinson , Fosfoproteínas , Humanos , Adenosina Trifosfato/metabolismo , Neuronas Dopaminérgicas/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Neuroblastoma/metabolismo , Enfermedad de Parkinson/metabolismo , Proteómica , Fosfoproteínas/metabolismo
4.
Mol Neurobiol ; 59(5): 2745-2757, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35175558

RESUMEN

Parkinson's disease (PD) is neurodegenerative disorder with the pathological hallmarks of progressive degeneration of midbrain dopaminergic neurons from the substantia nigra (SN), and accumulation and spread of inclusions of aggregated α-synuclein (α-Syn). Since current PD therapies do not prevent neurodegeneration, there is a need to identify therapeutic targets that can prevent α-Syn-induced reductions in neuronal survival and neurite growth. We hypothesised that genes that are normally co-expressed with the α-Syn gene (SNCA), and whose co-expression pattern is lost in PD, may be important for protecting against α-Syn-induced dopaminergic degeneration, since broken correlations can be used as an index of functional misregulation. Gene co-expression analysis of the human SN showed that nuclear zinc finger HIT-type containing 1 (ZNHIT1) is co-expressed with SNCA and that this co-expression pattern is lost in PD. Overexpression of ZNHIT1 was found to increase deposition of the H2A.Z histone variant in SH-SY5Y cells, to promote neurite growth and to prevent α-Syn-induced reductions in neurite growth and cell viability. Analysis of ZNHIT1 co-expressed genes showed significant enrichment in genes associated with mitochondrial function. In agreement, bioenergetic state analysis of mitochondrial function revealed that ZNHIT1 increased cellular ATP synthesis. Furthermore, α-Syn-induced impairments in basal respiration, maximal respiration and spare respiratory capacity were not seen in ZNHIT1-overexpressing cells. These data show that ZNHIT1 can protect against α-Syn-induced degeneration and mitochondrial dysfunction, which rationalises further investigation of ZNHIT1 as a therapeutic target for PD.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Neuronas Dopaminérgicas/metabolismo , Humanos , Mitocondrias/metabolismo , Neuritas/metabolismo , Enfermedad de Parkinson/patología , Fosfoproteínas , Sustancia Negra/patología , alfa-Sinucleína/metabolismo
5.
Brain Behav Immun ; 102: 151-160, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35217173

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder characterised by nigrostriatal dopaminergic (DA) neurodegeneration. There is a critical need for neuroprotective therapies, particularly those that do not require direct intracranial administration. Small molecule inhibitors of histone deacetylases (HDIs) are neuroprotective in in vitro and in vivo models of PD, however it is unknown whether Class IIa-specific HDIs are neuroprotective when administered peripherally. Here we show that 6-hydroxydopamine (6-OHDA) treatment induces protein kinase C (PKC)-dependent nuclear accumulation of the Class IIa histone deacetylase (HDAC)5 in SH-SY5Y cells and cultured DA neurons in vitro. Treatment of these cultures with the Class IIa-specific HDI, MC1568, partially protected against 6-OHDA-induced cell death. In the intrastriatal 6-OHDA lesion in vivo rat model of PD, MC1568 treatment (0.5 mg/kg i.p.) for 7 days reduced forelimb akinesia and partially protected DA neurons in the substantia nigra and their striatal terminals from 6-OHDA-induced neurodegeneration. MC1568 treatment prevented 6-OHDA-induced increases in microglial activation in the striatum and substantia nigra. Furthermore, MC1568 treatment decreased 6-OHDA-induced increases in nuclear HDAC5 in nigral DA neurons. These data suggest that peripheral administration of Class IIa-specific HDIs may be a potential therapy for neuroprotective in PD.


Asunto(s)
Inhibidores de Histona Desacetilasas , Ácidos Hidroxámicos , Fármacos Neuroprotectores , Enfermedad de Parkinson , Pirroles , Animales , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Ácidos Hidroxámicos/farmacología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/prevención & control , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/farmacología , Oxidopamina , Pirroles/farmacología , Ratas , Sustancia Negra
6.
Mol Neurobiol ; 59(1): 61-76, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34623600

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disease characterised by the progressive degeneration of midbrain dopaminergic neurons, coupled with the intracellular accumulation of α-synuclein. Axonal degeneration is a central part of the pathology of PD. While the majority of PD cases are sporadic, some are genetic; the G2019S mutation in leucine-rich repeat kinase 2 (LRRK2) is the most common genetic form. The application of neurotrophic factors to protect dopaminergic neurons is a proposed experimental therapy. One such neurotrophic factor is growth differentiation factor (GDF)5. GDF5 is a dopaminergic neurotrophic factor that has been shown to upregulate the expression of a protein called nucleoside diphosphate kinase A (NME1). However, whether NME1 is neuroprotective in cell models of axonal degeneration of relevance to PD is unknown. Here we show that treatment with NME1 can promote neurite growth in SH-SY5Y cells, and in cultured dopaminergic neurons treated with the neurotoxin 6-hydroxydopamine (6-OHDA). Similar effects of NME1 were found in SH-SY5Y cells and dopaminergic neurons overexpressing human wild-type α-synuclein, and in stable SH-SY5Y cell lines carrying the G2019S LRRK2 mutation. We found that the effects of NME1 require the RORα/ROR2 receptors. Furthermore, increased NF-κB-dependent transcription was partially required for the neurite growth-promoting effects of NME1. Finally, a combined bioinformatics and biochemical analysis of the mitochondrial oxygen consumption rate revealed that NME1 enhanced mitochondrial function, which is known to be impaired in PD. These data show that recombinant NME1 is worthy of further study as a potential therapeutic agent for axonal protection in PD.


Asunto(s)
Neuronas Dopaminérgicas/efectos de los fármacos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Nucleósido Difosfato Quinasas NM23/farmacología , Degeneración Nerviosa/prevención & control , Neuritas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , alfa-Sinucleína/genética , Línea Celular Tumoral , Neuronas Dopaminérgicas/patología , Humanos , Degeneración Nerviosa/genética , Neuritas/patología , Proyección Neuronal/efectos de los fármacos
7.
Neural Regen Res ; 17(1): 38-44, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34100424

RESUMEN

Parkinson's disease is the most common movement disorder worldwide, affecting over 6 million people. It is an age-related disease, occurring in 1% of people over the age of 60, and 3% of the population over 80 years. The disease is characterized by the progressive loss of midbrain dopaminergic neurons from the substantia nigra, and their axons, which innervate the striatum, resulting in the characteristic motor and non-motor symptoms of Parkinson's disease. This is paralleled by the intracellular accumulation of α-synuclein in several regions of the nervous system. Current therapies are solely symptomatic and do not stop or slow disease progression. One promising disease-modifying strategy to arrest the loss of dopaminergic neurons is the targeted delivery of neurotrophic factors to the substantia nigra or striatum, to protect the remaining dopaminergic neurons of the nigrostriatal pathway. However, clinical trials of two well-established neurotrophic factors, glial cell line-derived neurotrophic factor and neurturin, have failed to meet their primary end-points. This failure is thought to be at least partly due to the downregulation by α-synuclein of Ret, the common co-receptor of glial cell line-derived neurorophic factor and neurturin. Growth/differentiation factor 5 is a member of the bone morphogenetic protein family of neurotrophic factors, that signals through the Ret-independent canonical Smad signaling pathway. Here, we review the evidence for the neurotrophic potential of growth/differentiation factor 5 in in vitro and in vivo models of Parkinson's disease. We discuss new work on growth/differentiation factor 5's mechanisms of action, as well as data showing that viral delivery of growth/differentiation factor 5 to the substantia nigra is neuroprotective in the α-synuclein rat model of Parkinson's disease. These data highlight the potential for growth/differentiation factor 5 as a disease-modifying therapy for Parkinson's disease.

8.
Mol Cell Neurosci ; 115: 103642, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34119632

RESUMEN

Epigenetic modifications in neurodegenerative disease are under investigation for their roles in disease progression. Alterations in acetylation rates of certain Parkinson's disease (PD)-linked genes have been associated with the pathological progression of this disorder. In light of this, and given the lack of disease-modifying therapies for PD, HDAC inhibitors (HDIs) are under consideration as potential pharmacological agents. The neuroprotective effects of pan-HDACs and some class-specific inhibitors have been tested in in vivo and in vitro models of PD, with varying outcomes. Here we used gene co-expression analysis to identify HDACs that are associated with human dopaminergic (DA) neuron development. We identified HDAC3, HDAC5, HDAC6 and HDAC9 as being highly correlated with the DA markers, SLC6A3 and NR4A2. RT-qPCR revealed that mRNA expression of these HDACs exhibited similar temporal profiles during embryonic mouse midbrain DA (mDA) neuron development. We tested the neuroprotective potential of a number of class-specific small molecule HDIs on human SH-SY5Y cells, using neurite growth as a phenotypic readout of neurotrophic action. Neither the class I-specific HDIs, RGFP109 and RGFP966, nor the HDAC6 inhibitor ACY1215, had significant effects on neurite outgrowth. However, the class IIa HDI, LMK235 (a HDAC4/5 inhibitor), significantly increased histone acetylation and neurite outgrowth. We found that LMK235 increased BMP-Smad-dependent transcription in SH-SY5Y cells and that this was required for its neurite growth-promoting effects on SH-SY5Y cells and on DA neurons in primary cultures of embryonic day (E) 14 rat ventral mesencephalon (VM). These effects were also seen in SH-SY5Y cells transfected with HDAC5 siRNA. Furthermore, LMK235 treatment exerted neuroprotective effects against degeneration induced by the DA neurotoxin 1-methyl-4-phenylpyridinium (MPP+), in both SH-SY5Y cells and cultured DA neurons. Treatment with LMK235 was also neuroprotective against axonal degeneration induced by overexpression of wild-type (WT) or A53T mutant α-synuclein in both SH-SY5Y cells and primary cultures of DA neurons. In summary, these data show the neuroprotective potential of the class IIa HDI, LMK235, in cell models of relevance to PD.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Animales , Neuronas Dopaminérgicas , Histona Desacetilasas , Ratones , Neurotoxinas/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Ratas , alfa-Sinucleína/genética
9.
Mol Neurobiol ; 58(7): 3405-3416, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33713017

RESUMEN

Parkinson's disease is a neurodegenerative disorder characterised by nigrostriatal dopaminergic degeneration, and intracellular α-synuclein aggregation. Current pharmacological treatments are solely symptomatic so there is a need to identify agents that can slow or stop dopaminergic degeneration. One proposed class of therapeutics are neurotrophic factors which promote the survival of nigrostriatal dopaminergic neurons. However, neurotrophic factors need to be delivered directly to the brain. An alternative approach may be to identify pharmacological agents which can reach the brain to stimulate neurotrophic factor expression and/or their signalling pathways in dopaminergic neurons. BMP2 is a neurotrophic factor that is expressed in the human substantia nigra; exogenous BMP2 administration protects against dopaminergic degeneration in in vitro models of PD. In this study, we investigated the neurotrophic potential of two FDA-approved drugs, quinacrine and niclosamide, that are modulators of BMP2 signalling. We report that quinacrine and niclosamide, like BMP2, significantly increased neurite length, as a readout of neurotrophic action, in SH-SY5Y cells and dopaminergic neurons in primary cultures of rat ventral mesencephalon. We also show that these effects of quinacrine and niclosamide require the activation of BMP-Smad signalling. Finally, we demonstrate that quinacrine and niclosamide are neuroprotective against degeneration induced by the neurotoxins, MPP+ and 6-OHDA, and by viral-mediated overexpression of α-synuclein in vitro. Collectively, this study identifies two drugs, that are safe for use in patients' to 'are approved for human use, that exert neurotrophic effects on dopaminergic neurons through modulation of BMP-Smad signalling. This rationalises the further study of drugs that target the BMP-Smad pathway as potential neuroprotective pharmacotherapy for Parkinson's disease.


Asunto(s)
Neuronas Dopaminérgicas/efectos de los fármacos , Neuritas/efectos de los fármacos , Neuroprotección/efectos de los fármacos , Niclosamida/farmacología , Quinacrina/farmacología , alfa-Sinucleína/toxicidad , Animales , Proteína Morfogenética Ósea 2/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Línea Celular Tumoral , Células Cultivadas , Neuronas Dopaminérgicas/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Mesencéfalo/efectos de los fármacos , Mesencéfalo/metabolismo , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/prevención & control , Neuritas/metabolismo , Neuroprotección/fisiología , Neurotoxinas/toxicidad , Niclosamida/uso terapéutico , Quinacrina/uso terapéutico , Ratas , Proteínas Smad/metabolismo
11.
iScience ; 23(9): 101457, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32853992

RESUMEN

Loss of midbrain dopaminergic (mDA) neurons and their axons is central to Parkinson's disease (PD). Growth differentiation factor (GDF)5 is a potential neurotrophic factor for PD therapy. However, the molecular mediators of its neurotrophic action are unknown. Our proteomics analysis shows that GDF5 increases the expression of serine threonine receptor-associated protein kinase (STRAP) and nucleoside diphosphate kinase (NME)1 in the SH-SY5Y neuronal cell line. GDF5 overexpression increased NME1 expression in adult rat brain in vivo. NME and STRAP mRNAs are expressed in developing and adult rodent midbrain. Expression of both STRAP and NME1 is necessary and sufficient for the promotion of neurite growth in SH-SY5Y cells by GDF5. NME1 treatment increased neurite growth in both SH-SY5Y cells and cultured mDA neurons. Expression patterns of NME and STRAP are altered in PD midbrain. NME1 and STRAP are thus key mediators of GDF5's neurotrophic effects, rationalizing their future study as therapeutic targets for PD.

12.
Neuronal Signal ; 4(1): NS20200006, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32714600

RESUMEN

Neuroblastoma (NB) is a paediatric cancer that arises in the sympathetic nervous system. Patients with stage 4 tumours have poor outcomes and 20% of high-risk cases have MYCN amplification. The bone morphogenetic proteins (BMPs) play roles in sympathetic neuritogenesis, by signalling through bone morphogenetic protein receptor (BMPR)2 and either BMPR1A or BMPR1B. Alterations in BMPR2 expression have been reported in NB; it is unknown if the expression of BMPR1A or BMPR1B is altered. We report lower BMPR2 and BMPR1B, and higher BMPR1A, expression in stage 4 and in MYCN-amplified NB. Kaplan-Meier plots showed that high BMPR2 or BMPR1B expression was linked to better survival, while high BMPR1A was linked to worse survival. Gene ontology enrichment and pathway analyses revealed that BMPR2 and BMPR1B co-expressed genes were enriched in those associated with NB differentiation. BMPR1A co-expressed genes were enriched in those associated with cell proliferation. Moreover, the correlation between BMPR2 and BMPR1A was strengthened, while the correlation between BMPR2 and BMPR1B was lost, in MYCN-amplified NB. This suggested that differentiation should decrease BMPR1A and increase BMPR1B expression. In agreement, nerve growth factor treatment of cultured sympathetic neurons decreased Bmpr1a expression and increased Bmpr1b expression. Overexpression of dominant negative BMPR1B, treatment with a BMPR1B inhibitor and treatment with GDF5, which signals via BMPR1B, showed that BMPR1B signalling is required for optimal neuritogenesis in NB cells, suggesting that loss of BMPR1B may alter neuritogenesis. The present study shows that expression of distinct BMPRs is associated with different survival outcomes in NB.

13.
Neuronal Signal ; 4(2): NS20200001, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32714601

RESUMEN

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterised by specific motor impairments. The neuropathological hallmarks of PD include progressive degeneration of midbrain dopaminergic neurons, and loss of their axonal projections to the striatum. Additionally, there is progressive accumulation and spread of intracellular aggregates of α-synuclein. Although dopamine-replacement pharmacotherapy can treat PD symptoms in the short-term, there is a critical need for the development of disease-modifying therapies based on an understanding of the underlying disease mechanisms. One such mechanism is histone acetylation, which is a common epigenetic modification that alters gene transcription. A number of studies have described alterations in histone acetylation in the brains of PD patients. Moreover, α-synuclein accumulation has been linked to alterations in histone acetylation and pharmacological strategies aimed at modulating histone acetylation are under investigation as novel approaches to disease modification in PD. Currently, such strategies are focused predominantly on pan-inhibition of histone deacetylase (HDAC) enzymes. Inhibition of specific individual HDAC enzymes is a more targeted strategy that may allow for future clinical translation. However, the most appropriate class of HDACs that should be targeted for neuroprotection in PD is still unclear. Recent work has shed new light on the role of class-II HDACs in dopaminergic degeneration. For this reason, here we describe the regulation of histone acetylation, outline the evidence for alterations in histone acetylation in the PD brain, and focus on the roles of class II HDACs and the potential of class-II HDAC inhibition as a therapeutic approach for neuroprotection in PD.

14.
Neural Regen Res ; 15(8): 1432-1436, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31997802

RESUMEN

Parkinson's disease is the second most common neurodegenerative disorder; it affects 1% of the population over the age of 65. The number of people with Parkinson's disease is set to rapidly increase due to changing demographics and there is an unmet clinical need for disease-modifying therapies. The pathological hallmarks of Parkinson's disease are the progressive degeneration of dopaminergic neurons in the substantia nigra and their axons which project to the striatum, and the aggregation of α-synuclein; these result in a range of debilitating motor and non-motor symptoms. The application of neurotrophic factors to protect and potentially regenerate the remaining dopaminergic neurons is a major area of research interest. However, this strategy has had limited success to date. Clinical trials of two well-known neurotrophic factors, glial cell line-derived neurotrophic factor and neurturin, have reported limited efficacy in Parkinson's disease patients, despite these factors showing potent neurotrophic actions in animal studies. There is therefore a need to identify other neurotrophic factors that can protect against α-synuclein-induced degeneration of dopaminergic neurons. The bone morphogenetic protein (BMP) family is the largest subgroup of the transforming growth factor-ß superfamily of proteins. BMPs are naturally secreted proteins that play crucial roles throughout the developing nervous system. Importantly, many BMPs have been shown to be potent neurotrophic factors for dopaminergic neurons. Here we discuss recent work showing that transcripts for the BMP receptors and BMP2 are co-expressed with several key markers of dopaminergic neurons in the human substantia nigra, and evidence for downregulation of BMP2 expression at distinct stages of Parkinson's disease. We also discuss studies that explored the effects of BMP2 treatment, in in vitro and in vivo models of Parkinson's disease. These studies found potent effects of BMP2 on dopaminergic neurites, which is important given that axon degeneration is increasingly recognized as a key early event in Parkinson's disease. Thus, the aim of this mini-review is to give an overview of the BMP family and the BMP-Smad signalling pathway, in addition to reviewing the available evidence demonstrating the potential of BMP2 for Parkinson's disease therapy.

15.
Front Cell Dev Biol ; 7: 191, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31572723

RESUMEN

Parkinson's disease is characterized by the intracellular accumulation of α-synuclein which has been linked to early dopaminergic axonal degeneration. Identifying druggable targets that can promote axonal growth in cells overexpressing α-synuclein is important in order to develop strategies for early intervention. Class-IIa histone deacetylases (HDACs) have previously emerged as druggable targets, however, it is not known which specific class-IIa HDACs should be targeted to promote neurite growth in dopaminergic neurons. To provide insight into this, we used gene co-expression analysis to identify which, if any, of the class-IIa HDACs had a positive correlation with markers of dopaminergic neurons in the human substantia nigra. This revealed that two histone deacetylases, HDAC5 and HDAC9, are co-expressed with TH, GIRK2 and ALDH1A1 in the human SN. We further found that HDAC5 and HDAC9 are expressed in dopaminergic neurons in the adult mouse substantia nigra. We show that siRNAs targeting HDAC5 or HDAC9 can promote neurite growth in SH-SY5Y cells, and that their pharmacological inhibition, using the drug MC1568, promoted neurite growth in cultured rat dopaminergic neurons. Moreover, MC1568 treatment upregulated the expression of the neurotrophic factor, BMP2, and its downstream transcription factor, SMAD1. In addition, MC1568 or siRNAs targeting HDAC5 or HDAC9 led to an increase in Smad-dependent GFP expression in a reporter assay. Furthermore, MC1568 treatment of cultured rat dopaminergic neurons increased cellular levels of phosphorylated Smad1, which was prevented by the BMP receptor inhibitor, dorsomorphin. Dorsomorphin treatment prevented the neurite growth-promoting effects of siRNAs targeting HDAC5, as did overexpression of dominant-negative Smad4 or of the inhibitory Smad7, demonstrating a functional link to BMP signaling. Supplementation with BMP2 prevented the neurite growth-inhibitory effects of nuclear-restricted HDAC5. Finally, we report that siRNAs targeting HDAC5 or HDAC9 promoted neurite growth in cells overexpressing wild-type or A53T-α-synuclein and that MC1568 protected cultured rat dopaminergic neurons against the neurotoxin, MPP+. These findings establish HDAC5 and HDAC9 as novel regulators of BMP-Smad signaling, that additionally may be therapeutic targets worthy of further exploration in iPSC-derived human DA neurons and in vivo models of Parkinson's disease.

16.
Parkinsonism Relat Disord ; 64: 194-201, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31000327

RESUMEN

INTRODUCTION: α-synuclein-induced degeneration of dopaminergic neurons has been proposed to be central to the early progression of Parkinson's disease. This highlights the need to identify factors that are neuroprotective or neuroregenerative against α-synuclein-induced degeneration. Due to their potent neurotrophic effects on nigrostriatal dopaminergic neurons, we hypothesized that members of the bone morphogenetic protein (BMP) family have potential to protect these cells against α-synuclein. METHODS: To identify the most relevant BMP ligands, we used unbiased gene co-expression analysis to identify all BMP family members having a significant positive correlation with five markers of dopaminergic neurons in the human substantia nigra (SN). We then tested the ability of lead BMPs to promote neurite growth in SH-SY5Y cells and in primary cultures of ventral mesencephalon (VM) dopaminergic neurons, treated with either 6-OHDA or MPP+, or overexpressing wild-type or A53T α-synuclein. RESULTS: Only the expression of BMP2 was found to be significantly correlated with multiple dopaminergic markers in the SN. We found that BMP2 treatment promoted neurite growth in SH-SY5Y cells and in dopaminergic neurons. Moreover, BMP2 treatment promoted neurite growth in both SH-SY5Y cells and VM neurons, treated with the neurotoxins 6-OHDA or MPP+. Furthermore, BMP2 promoted neurite growth in cells overexpressing wild-type or A53T-α-synuclein. CONCLUSION: These findings are important given that clinical trials of two neurotrophic factors, GDNF and neurturin, have failed to meet their primary endpoints. Our findings are a key first step in rationalising the further study of BMP2 as a potential neurotrophic factor in α-synuclein-based translational models of Parkinson's disease.


Asunto(s)
Proteína Morfogenética Ósea 2/metabolismo , Neuronas Dopaminérgicas/metabolismo , Neuritas/metabolismo , Sustancia Negra/metabolismo , alfa-Sinucleína/metabolismo , Animales , Proteína Morfogenética Ósea 2/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Perfilación de la Expresión Génica , Humanos , Factores de Crecimiento Nervioso/metabolismo , Factores de Crecimiento Nervioso/farmacología , Neuritas/efectos de los fármacos , Enfermedad de Parkinson/metabolismo , Ratas , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Sustancia Negra/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/farmacología
17.
Mol Neurobiol ; 53(10): 7284-7297, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-26687234

RESUMEN

Nociceptin/orphanin FQ (N/OFQ) is an opioid-like neuropeptide that binds and signals through a G-protein-coupled receptor called the N/OFQ peptide (NOP) receptor. N/OFQ and the NOP receptor are expressed in the midbrain and have been implicated in the pathogenesis of Parkinson's disease (PD). Genetic removal of the N/OFQ precursor partially protects midbrain dopaminergic neurons from 1-methyl-4-phenylpyridine-induced toxicity, suggesting that endogenous N/OFQ may be detrimental to dopaminergic neurons. However, whether N/OFQ directly affects the survival and growth of dopaminergic neurons is unknown. Here, we show that N/OFQ has a detrimental effect on the survival of dopaminergic neurons and the growth of their axons in primary cultures of the E14 rat ventral mesencephalon. N/OFQ potentiates the effects of the neurotoxins 6-hydroxydopamine and 1-methyl-4-phenylpyridinium through p38-MAPK signalling. We also show that like α-synuclein, there is a significant reduction in N/OFQ messenger RNA (mRNA) expression in the midbrain of patients with Parkinson's disease. These results demonstrate for the first time that N/OFQ is detrimental to the survival and growth of dopaminergic neurons and that its expression is altered in the midbrain of patients with Parkinson's disease.


Asunto(s)
Axones/metabolismo , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/enzimología , Mesencéfalo/citología , Péptidos Opioides/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , 1-Metil-4-fenilpiridinio , Animales , Axones/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de los fármacos , Humanos , Neurotoxinas/toxicidad , Oxidopamina , Enfermedad de Parkinson/enzimología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Nociceptina
18.
Mol Neurobiol ; 51(3): 1432-42, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25065734

RESUMEN

Small molecule histone deacetylase inhibitors (HDIs) hold much promise as pharmacological modifiers of the epigenetic status of the central nervous system (CNS), given their ability to cross the blood-brain barrier. This is particularly relevant given the lack of disease-modifying therapies for many neurodegenerative diseases and that epigenetic perturbations are increasingly recognised as playing a key role in their pathophysiology. In particular, emerging evidence in recent years has shown that epigenetic dysregulation may contribute to dopaminergic neuronal death in Parkinson's disease. As a result, a number of pan-HDIs have been explored as potential neuroprotective agents for dopaminergic neurons. However, it is not known if the neuroprotective effects of pan-histone deacetylase (HDAC) inhibition are a general phenomenon or if these effects require inhibition of specific classes of HDACs. Here, we examine the ability of class-specific HDIs to promote neurite growth in a variety of cellular contexts. We find that MC1568, a class IIa-specific HDI, promotes neurite growth and arbourisation and protects neurite arbours against neurotoxic insult. Furthermore, we show that class IIa-specific HDAC inhibition results in activation of the canonical Smad signalling pathway, which is known to promote the survival and growth of midbrain dopaminergic neurons. These results demonstrate the potential of class IIa-specific HDIs as regulators of neuronal structure and suggest they should be examined in animal models of Parkinson's disease as the next stage in rationalising their use as a potential therapy for this disorder.


Asunto(s)
Axones/patología , Neuronas Dopaminérgicas/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Muerte Celular/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Humanos , Ácidos Hidroxámicos/farmacología , Mesencéfalo/efectos de los fármacos , Mesencéfalo/metabolismo , Mesencéfalo/patología , Fármacos Neuroprotectores/farmacología , Síndromes de Neurotoxicidad/tratamiento farmacológico , Pirroles/farmacología
19.
Mol Neurobiol ; 51(3): 1158-67, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-24957007

RESUMEN

Mitogen-activated protein kinase phosphatase (MKP)-1 provides a negative feedback mechanism for regulating mitogen-activated protein kinase (MAPK) activity and thus a variety of cellular processes such as proliferation, differentiation, growth and apoptosis. MKP-1 is established as a central regulator of a variety of functions in the immune, metabolic and cardiovascular systems, and it is now increasingly acknowledged as having a role to play in the nervous system. It has been implicated in regulating processes of neuronal cell development and death as well as in glial cell function. Reduced MKP-1 levels have been observed in models of neurological conditions including Huntington's disease, multiple sclerosis, ischemia and cerebral hypoxia. It has also been suggested to have a role to play in psychiatric disorders such as major depressive disorder. Here, we discuss the role of MKP-1 in nervous system development and disease and examine current evidence providing insight into MKP-1 as a potential therapeutic target for various diseases of the central nervous system.


Asunto(s)
Sistema Nervioso Central/enzimología , Sistema Nervioso Central/crecimiento & desarrollo , Fosfatasa 1 de Especificidad Dual/biosíntesis , Animales , Trastorno Depresivo Mayor/diagnóstico , Trastorno Depresivo Mayor/enzimología , Humanos , Enfermedad de Huntington/diagnóstico , Enfermedad de Huntington/enzimología , Esclerosis Múltiple/diagnóstico , Esclerosis Múltiple/enzimología
20.
Springerplus ; 3: 205, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24826373

RESUMEN

We have previously demonstrated that mitogen-activated protein kinase phosphatase 1, Mkp1, is expressed in the developing and rat adult substantia nigra and striatum, where it promotes the growth of nigral dopaminergic neurons. Mkp1 may therefore have therapeutic potential for Parkinson's disease. In the present study, we have assessed the expression of Mkp1 and TH in the substantia nigra and striatum of parkinsonian rat models. Expression was measured at 4 and 10 days post-lesion in the 6-hydroxydopamine (6-OHDA) medial forebrain bundle lesion model and after 4, 10 and 28 days in the 6-OHDA striatal lesion model. Our results show that Mkp1 expression was transiently up-regulated in the substantia nigra at 4 days post-6-OHDA administration in the two models while TH expression was decreased at the later time-points examined. These data suggest that Mkp1 may play a role in counteracting the neurotoxic effects of 6-OHDA in nigral dopaminergic neurons.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA