Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
CPT Pharmacometrics Syst Pharmacol ; 11(5): 640-652, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35213797

RESUMEN

The use of systems-based pharmacological modeling approaches to characterize mode-of-action and concentration-effect relationships for drugs on specific hemodynamic variables has been demonstrated. Here, we (i) expand a previously developed hemodynamic system model through integration of cardiac output (CO) with contractility (CTR) using pressure-volume loop theory, and (ii) evaluate the contribution of CO data for identification of system-specific parameters, using atenolol as proof-of-concept drug. Previously collected experimental data was used to develop the systems model, and included measurements for heart rate (HR), CO, mean arterial pressure (MAP), and CTR after administration of atenolol (0.3-30 mg/kg) from three in vivo telemetry studies in conscious Beagle dogs. The developed cardiovascular (CVS)-contractility systems model adequately described the effect of atenolol on HR, CO, dP/dtmax, and MAP dynamics and allowed identification of both system- and drug-specific parameters with good precision. Model parameters were structurally identifiable, and the true mode of action can be identified properly. Omission of CO data did not lead to a significant change in parameter estimates compared to a model that included CO data. The newly developed CVS-contractility systems model characterizes short-term drug effects on CTR, CO, and other hemodynamic variables in an integrated and quantitative manner. When the baseline value of total peripheral resistance is predefined, CO data was not required to identify drug- and system-specific parameters. Confirmation of the consistency of system-specific parameters via inclusion of data for additional drugs and species is warranted. Ultimately, the developed model has the potential to be of relevance to support translational CVS safety studies.


Asunto(s)
Sistema Cardiovascular , Contracción Miocárdica , Animales , Atenolol/farmacología , Perros , Frecuencia Cardíaca , Hemodinámica/fisiología , Humanos , Contracción Miocárdica/fisiología
2.
CPT Pharmacometrics Syst Pharmacol ; 9(9): 498-508, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32453487

RESUMEN

Stability analysis, often overlooked in pharmacometrics, is essential to explore dynamical systems. The model developed by Friberg et al.1 to describe drug-induced hematotoxicity is widely used to support decisions across drug development, and parameter values are often identified from observed blood counts. We use stability analysis to study the parametric dependence of stable and unstable solutions of several Friberg-type models and highlight the risks associated with system instability in the context of nonlinear mixed effects modeling. We emphasize the consequences of unstable solutions on prediction performance by demonstrating nonbiological system behaviors in a real case study of drug-induced thrombocytopenia. Ultimately, we provide simple criteria for identifying parameters associated with stable solutions of Friberg-type models. For instance, in the original Friberg model, we find that stability depends only on the parameter that governs the feedback from peripheral cells to progenitors and provide the exact range of values that results in stable solutions.


Asunto(s)
Desarrollo de Medicamentos/métodos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/sangre , Hematopoyesis/efectos de los fármacos , Trombocitopenia/inducido químicamente , Biomarcadores Farmacológicos/sangre , Recuento de Células Sanguíneas/estadística & datos numéricos , Simulación por Computador , Retroalimentación , Humanos , Modelos Biológicos , Dinámicas no Lineales , Análisis de Sistemas
3.
Br J Pharmacol ; 177(15): 3568-3590, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32335903

RESUMEN

BACKGROUND AND PURPOSE: Cardiovascular safety is one of the most frequent causes of safety-related attrition both preclinically and clinically. Preclinical cardiovascular safety is routinely assessed using dog telemetry monitoring key cardiovascular functions. The present research was to develop a semi-mechanistic modelling platform to simultaneously assess changes in contractility (dPdtmax ), heart rate (HR) and mean arterial pressure (MAP) in preclinical studies. EXPERIMENTAL APPROACH: Data from dPdtmax , HR, preload (left ventricular end-diastolic pressure [LVEDP]) and MAP were available from dog telemetry studies after dosing with atenolol (n = 27), salbutamol (n = 5), L-NG -nitroarginine methyl ester (L-NAME; n = 4), milrinone (n = 4), verapamil (n = 12), dofetilide (n = 8), flecainide (n = 4) and AZ001 (n = 14). Literature model for rat CV function was used for the structural population pharmacodynamic model development. LVEDP was evaluated as covariate to account for the effect of preload on dPdtmax . KEY RESULTS: The model was able to describe drug-induced changes in dPdtmax , HR and MAP for all drugs included in the developed framework adequately, by incorporating appropriate drug effects on dPdtmax , HR and/or total peripheral resistance. Consistent with the Starling's law, incorporation of LVEDP as a covariate on dPdtmax to correct for the preload effect was found to be statistically significant. CONCLUSIONS AND IMPLICATIONS: The contractility and haemodynamics semi-mechanistic modelling platform accounts for diurnal variation, drug-induced changes and inter-animal variation. It can be used to hypothesize and evaluate pharmacological effects and provide a holistic cardiovascular safety profile for new drugs.


Asunto(s)
Sistema Cardiovascular , Contracción Miocárdica , Animales , Perros , Frecuencia Cardíaca , Hemodinámica , Ratas , Telemetría
4.
Drug Discov Today ; 25(7): 1129-1134, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32209428

RESUMEN

Our goal is to accurately predict all types of cardiovascular events in patients utilising nonclinical cardiovascular safety data. In the past two decades, cardiovascular safety science has primarily focused on events associated with the electrocardiogram. Broadening out to other cardiovascular parameters, we share real-life case studies that highlight our progress towards improved and better-informed project progression based upon use of disease models, mechanism-based translation and structure-function relationships. To fulfil this goal, further advances in patient-relevant humanised models will be required to enable cardiovascular safety science to keep pace with the ever-changing landscape of novel therapeutic paradigms.


Asunto(s)
Sistema Cardiovascular/efectos de los fármacos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Evaluación Preclínica de Medicamentos/métodos , Humanos , Medición de Riesgo , Relación Estructura-Actividad
5.
CPT Pharmacometrics Syst Pharmacol ; 8(11): 858-868, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31508894

RESUMEN

Haematological toxicity associated with cancer therapeutics is monitored by changes in blood cell count, and their primary effect is on proliferative progenitors in the bone marrow. Using observations in rat bone marrow and blood, we characterize a mathematical model that comprises cell proliferation and differentiation of the full haematopoietic phylogeny, with interacting feedback loops between lineages in homeostasis as well as following carboplatin exposure. We accurately predicted the temporal dynamics of several mature cell types related to carboplatin-induced bone marrow toxicity and identified novel insights into haematopoiesis. Our model confirms a significant degree of plasticity within bone marrow cells, with the number and type of both early progenitors and circulating cells affecting cell balance, via feedback mechanisms, through fate decisions of the multipotent progenitors. We also demonstrated cross-species translation of our predictions to patients, applying the same core model structure and considering differences in drug-dependent and physiology-dependent parameters.


Asunto(s)
Médula Ósea/efectos de los fármacos , Carboplatino/toxicidad , Biología de Sistemas/métodos , Animales , Diferenciación Celular , Proliferación Celular/efectos de los fármacos , Hematopoyesis/efectos de los fármacos , Homeostasis , Humanos , Modelos Teóricos , Ratas
6.
Clin Pharmacol Ther ; 104(4): 644-654, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29604045

RESUMEN

Balancing antitumor efficacy with toxicity is a significant challenge, and drug-induced myelosuppression is a common dose-limiting toxicity of cancer treatments. Mathematical modeling has proven to be a powerful ally in this field, scaling results from animal models to humans, and designing optimized treatment regimens. Here we outline existing mathematical approaches for studying bone marrow toxicity, identify gaps in current understanding, and make future recommendations to advance this vital field of safety research further.


Asunto(s)
Antineoplásicos/efectos adversos , Médula Ósea/efectos de los fármacos , Enfermedades Hematológicas/inducido químicamente , Hematopoyesis/efectos de los fármacos , Células Madre Hematopoyéticas/efectos de los fármacos , Modelos Biológicos , Pruebas de Toxicidad/métodos , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Médula Ósea/patología , Médula Ósea/fisiopatología , Linaje de la Célula , Relación Dosis-Respuesta a Droga , Enfermedades Hematológicas/patología , Enfermedades Hematológicas/fisiopatología , Células Madre Hematopoyéticas/patología , Humanos , Medición de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...