Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36675105

RESUMEN

Neuroblastoma is a neural crest cell-derived pediatric tumor characterized by high inter- and intra-tumor heterogeneity, and by a poor outcome in advanced stages. Patient-derived xenografts (PDXs) have been shown to be useful models for preserving and expanding original patient biopsies in vivo, and for studying neuroblastoma biology in a more physiological setting. The maintenance of genetic, histologic, and phenotypic characteristics of the original biopsy along serial PDX passages in mice is a major concern regarding this model. Here we analyze consecutive PDX passages in mice, at both transcriptomic and histological levels, in order to identify potential changes or highlight similarities to the primary sample. We studied temporal changes using mRNA and miRNA expression and correlate those with neuroblastoma aggressiveness using patient-derived databases. We observed a shortening of tumor onset and an increase in proliferative potential in the PDXs along serial passages. This behavior correlates with changes in the expression of genes related to cell proliferation and neuronal differentiation, including signaling pathways described as relevant for neuroblastoma malignancy. We also identified new genes and miRNAs that can be used to stratify patients according to survival, and which could be potential new players in neuroblastoma aggressiveness. Our results highlight the usefulness of the PDX neuroblastoma model and reflect phenotypic changes that might be occurring in the mouse environment. These findings could be useful for understanding the progression of tumor aggressiveness in this pathology.


Asunto(s)
MicroARNs , Neuroblastoma , Humanos , Animales , Ratones , Pase Seriado , Neuroblastoma/metabolismo , Transcriptoma , Perfilación de la Expresión Génica , Proliferación Celular , MicroARNs/genética , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Cancers (Basel) ; 12(11)2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33233777

RESUMEN

Neuroblastoma (NB) is one of the most common pediatric cancers and presents a poor survival rate in affected children. Current pretreatment risk assessment relies on a few known molecular parameters, like the amplification of the oncogene MYCN. However, a better molecular knowledge about the aggressive progression of the disease is needed to provide new therapeutical targets and prognostic markers and to improve patients' outcomes. The human protein kinase VRK1 phosphorylates various signaling molecules and transcription factors to regulate cell cycle progression and other processes in physiological and pathological situations. Using neuroblastoma tumor expression data, tissue microarrays from fresh human samples and patient-derived xenografts (PDXs), we have determined that VRK1 kinase expression stratifies patients according to tumor aggressiveness and survival, allowing the identification of patients with worse outcome among intermediate risk. VRK1 associates with cell cycle signaling pathways in NB and its downregulation abrogates cell proliferation in vitro and in vivo. Through the analysis of ChIP-seq and methylation data from NB tumors, we show that VRK1 is a MYCN gene target, however VRK1 correlates with NB aggressiveness independently of MYCN gene amplification, synergizing with the oncogene to drive NB progression. Our study also suggests that VRK1 inhibition may constitute a novel cell-cycle-targeted strategy for anticancer therapy in neuroblastoma.

5.
EBioMedicine ; 49: 82-95, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31685444

RESUMEN

BACKGROUND: Neuroblastoma is a paediatric tumour originated from sympathoadrenal precursors and characterized by its heterogeneity and poor outcome in advanced stages. Intra-tumoral cellular heterogeneity has emerged as an important feature in neuroblastoma, with a potential major impact on tumour aggressiveness and response to therapy. CD44 is an adhesion protein involved in tumour progression, metastasis and stemness in different cancers; however, there has been controversies about the significance of CD44 expression in neuroblastoma and its relationship with tumour progression. METHODS: We have performed transcriptomic analysis on patient tumour samples studying the outcome of patients with high CD44 expression. Adhesion, invasion and proliferation assays were performed in sorted CD44high neuroblastoma cells. Tumoursphere cultures have been used to enrich in undifferentiated stem-like cells and to asses self-renewal and differentiation potential. We have finally performed in vivo tumorigenic assays on cell line-derived or Patient-derived xenografts. FINDINGS: We show that high CD44 expression is associated with low survival in high-grade human neuroblastoma, independently of MYCN amplification. CD44 is expressed in a cell population with neural crest stem-like features, and with the capacity to generate multipotent, undifferentiated tumourspheres in culture. These cells are more invasive and proliferative in vitro. CD44 positive cells obtained from tumours are more tumorigenic and metastatic, giving rise to aggressive neuroblastic tumours at high frequency upon transplantation. INTERPRETATION: We describe an unexpected intra-tumoural heterogeneity within cellular entities expressing CD44 in neuroblastoma, and propose that CD44 has a role in neural crest stem-like undifferentiated cells, which can contribute to tumorigenesis and malignancy in this type of cancer. FUNDING: Research supported by grants from the "Asociación Española contra el Cáncer" (AECC), the Spanish Ministry of Science and Innovation SAF program (SAF2016-80412-P), and the European Research Council (ERC Starting Grant to RP).


Asunto(s)
Receptores de Hialuranos/metabolismo , Cresta Neural/patología , Células-Madre Neurales/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patología , Animales , Carcinogénesis/metabolismo , Carcinogénesis/patología , Diferenciación Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Humanos , Ratones SCID , Células Madre Multipotentes/metabolismo , Invasividad Neoplásica , Metástasis de la Neoplasia , Esferoides Celulares/patología , Análisis de Supervivencia
6.
Oncotarget ; 8(52): 89775-89792, 2017 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-29163787

RESUMEN

Pediatric tumors arise upon oncogenic transformation of stem/progenitor cells during embryonic development. Given this scenario, the existence of non-tumorigenic stem cells included within the aberrant tumoral niche, with a potential role in tumor biology, is an intriguing and unstudied possibility. Here, we describe the presence and function of non-tumorigenic neural crest-derived progenitor cells in aggressive neuroblastoma (NB) tumors. These cells differentiate into neural crest typical mesectodermal derivatives, giving rise to tumor stroma and promoting proliferation and tumor aggressiveness. Furthermore, an analysis of gene expression profiles in stage 4/M NB revealed a neural crest stem cell (NCSC) gene signature that was associated to stromal phenotype and high probability of relapse. Thus, this NCSC gene expression signature could be used in prognosis to improve stratification of stage 4/M NB tumors. Our results might facilitate the design of new therapies by targeting NCSCs and their contribution to tumor stroma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA