Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
J Med Entomol ; 2024 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-39308414

RESUMEN

Aedes mosquitoes, as vectors of medically important arthropod-borne viruses (arboviruses), constitute a major public health threat that requires entomological and epidemiological surveillance to guide vector control programs to prevent and reduce disease transmission. In this study, we present the collaborative effort of 1 year of Aedes ageypti (Linnaeus, 1762) mosquito-based arbovirus surveillance in 2 geographically distinct regions of Latin America (Nicaragua and Ecuador). Adult female mosquitoes were collected using backpack aspirators in over 2,800 randomly selected households (Nicaragua, Ecuador) and 100 key sites (Nicaragua) from 8 distinct communities (Nicaragua: 2, Ecuador: 6). A total of 1,358 mosquito female pools were processed for RNA extraction and viral RNA detection using real-time reverse transcription-polymerase chain reaction. Ten positive dengue virus (DENV) pools were detected (3 in Nicaragua and 7 in Ecuador), all of which were found during the rainy season and matched the serotypes found in humans (Nicaragua: DENV-1 and DENV-4; Ecuador: DENV-2). Infection rates ranged from 1.13 to 23.13, with the Nicaraguan communities having the lowest infection rates. Our results demonstrate the feasibility of detecting DENV-infected Aedes mosquitoes in low-resource settings and underscore the need for targeted mosquito arbovirus sampling and testing, providing valuable insights for future surveillance programs in the Latin American region.

2.
PLoS One ; 19(8): e0309466, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39208200

RESUMEN

BACKGROUND: The COVID-19 pandemic has caused over 68.7 million infections and 1.35 million deaths in South America. There are limited data on SARS-CoV-2 seropositivity and its determinants from Andean countries prior to mass vaccinations against COVID-19. OBJECTIVE: To estimate SARS-CoV-2 seropositivity and its determinants before vaccination in occupational groups of adults presumed to have different levels of exposure and associations with potential symptomatology. METHODS: We measured seropositivity of anti-SARS-CoV-2 IgG antibodies in a cross-sectional study of vaccine-naïve adults aged 18 years and older, recruited within three occupational risk groups (defined as low [LR], moderate [MR], and high [HR]) between January and September 2021 in two Andean cities in Ecuador. Associations with risk factors were estimated using logistic regression. RESULTS: In a sample of 882 adults, IgG seropositivity for the three different occupational risk groups was 39.9% (CI 95% 35.3-44.6), 74.6% (CI 95% 66.4-81.4), and 39.0% (CI 95% 34.0-44.4) for the HR, MR, and LR groups, respectively. History of an illness with loss of taste and/or smell was significantly associated with seropositivity in all occupational groups, with adjusted ORs of 14.31 (95%CI, 5.83-35.12; p<0.001), 14.34 (95%CI 3.01-68.42; p<0.001), and 8.79 (95%CI 2.69-28.72; p<0.001), for the HR, MR, and LR groups, respectively; while fever was significant for the LR group with an adjusted OR of 1.24 (95%CI, 1.11-4.57; p = 0.025) and myalgia for the HR group with an adjusted OR of 2.07 (95%CI, 1.13-3.81; p = 0.019). CONCLUSION: Notable proportions of seropositivity were seen in all occupational groups between January and September 2021 prior to mass vaccination. Loss of taste and/or smell was strongly associated with presence of anti-SARS-CoV-2 IgG antibodies irrespective of presumed occupational exposure risk.


Asunto(s)
Anticuerpos Antivirales , COVID-19 , Inmunoglobulina G , SARS-CoV-2 , Humanos , Ecuador/epidemiología , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Adulto , Masculino , COVID-19/epidemiología , COVID-19/inmunología , Femenino , SARS-CoV-2/inmunología , Estudios Transversales , Persona de Mediana Edad , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Factores de Riesgo , Vacunación Masiva/estadística & datos numéricos , Adulto Joven , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Ciudades/epidemiología , Adolescente , Exposición Profesional
3.
J Infect Dis ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39082780

RESUMEN

The Zika virus (ZIKV) epidemic in Latin America (2015-2016) has primarily been studied in urban centers, with less understanding of its impact on smaller rural communities. To address this gap, we analyzed ZIKV sero-epidemiology in six rural Ecuadorian communities (2018-2019) with varying access to a commercial hub. Seroprevalence ranged from 19% to 54% measured by NS1 blockade of binding ELISA. We observed a decline in ZIKV seroprevalence between 2018 and 2019 that was greater among younger populations, suggesting that the attack rates in the 2015-16 epidemic were significantly higher than our 2018 observations. These data indicate that the 2015-16 epidemic included significant transmission in rural and more remote settings. Our observations of high seroprevalence in our area of study highlights the importance of surveillance and research in rural areas lacking robust health systems to manage future Zika outbreaks and vaccine initiatives.

4.
bioRxiv ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38895444

RESUMEN

The global circulation of SARS-CoV-2 has been extensively documented, yet the dynamics within Central America, particularly Nicaragua, remain underexplored. This study characterizes the genomic diversity of SARS-CoV-2 in Nicaragua from March 2020 through December 2022, utilizing 1064 genomes obtained via next-generation sequencing. These sequences were selected nationwide and analyzed for variant classification, lineage predominance, and phylogenetic diversity. We employed both Illumina and Oxford Nanopore Technologies for all sequencing procedures. Results indicated a temporal and spatial shift in dominant lineages, initially from B.1 and A.2 in early 2020 to various Omicron subvariants towards the study's end. Significant lineage shifts correlated with changes in COVID-19 positivity rates, underscoring the epidemiological impact of variant dissemination. The comparative analysis with regional data underscored the low diversity of circulating lineages in Nicaragua and their delayed introduction compared to other countries in the Central American region. The study also linked specific viral mutations with hospitalization rates, emphasizing the clinical relevance of genomic surveillance. This research advances the understanding of SARS-CoV-2 evolution in Nicaragua and provide valuable information regarding its genetic diversity for public health officials in Central America. We highlight the critical role of ongoing genomic surveillance in identifying emergent lineages and informing public health strategies.

5.
Emerg Infect Dis ; 30(6): 1203-1213, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38782023

RESUMEN

Major dengue epidemics throughout Nicaragua's history have been dominated by 1 of 4 dengue virus serotypes (DENV-1-4). To examine serotypes during the dengue epidemic in Nicaragua in 2022, we performed real-time genomic surveillance in-country and documented cocirculation of all 4 serotypes. We observed a shift toward co-dominance of DENV-1 and DENV-4 over previously dominant DENV-2. By analyzing 135 new full-length DENV sequences, we found that introductions underlay the resurgence: DENV-1 clustered with viruses from Ecuador in 2014 rather than those previously seen in Nicaragua; DENV-3, which last circulated locally in 2014, grouped instead with Southeast Asia strains expanding into Florida and Cuba in 2022; and new DENV-4 strains clustered within a South America lineage spreading to Florida in 2022. In contrast, DENV-2 persisted from the formerly dominant Nicaragua clade. We posit that the resurgence emerged from travel after the COVID-19 pandemic and that the resultant intensifying hyperendemicity could affect future dengue immunity and severity.


Asunto(s)
COVID-19 , Virus del Dengue , Dengue , Filogenia , SARS-CoV-2 , Serogrupo , Virus del Dengue/genética , Virus del Dengue/clasificación , Nicaragua/epidemiología , Humanos , Dengue/epidemiología , Dengue/virología , COVID-19/epidemiología , COVID-19/virología , SARS-CoV-2/genética , Pandemias
6.
bioRxiv ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38562865

RESUMEN

Aedes mosquitoes, as vectors of medically important arthropod-borne viruses (arboviruses), constitute a major public health threat that requires entomological and epidemiological surveillance to guide vector control programs to prevent and reduce disease transmission. In this study, we present the collaborative effort of one year of mosquito-based arbovirus surveillance in two geographically distinct regions of Latin America (Nicaragua and Ecuador). Adult female mosquitoes were collected using backpack aspirators in over 2,800 randomly selected households (Nicaragua, Ecuador) and 100 key sites (Nicaragua) from eight distinct communities (Nicaragua: 2, Ecuador: 6). A total of 1,358 mosquito female pools were processed for RNA extraction and viral RNA detection using real-time RT-PCR. Ten positive dengue virus (DENV) pools were detected (3 in Nicaragua and 7 in Ecuador), all of which were found during the rainy season and matched the serotypes found in humans (Nicaragua: DENV-1 and DENV-4; Ecuador: DENV-2). Infection rates ranged from 1.13 to 23.13, with the Nicaraguan communities having the lowest infection rates. Our results demonstrate the feasibility of detecting DENV-infected Aedes mosquitoes in low-resource settings and underscore the need for targeted mosquito arbovirus sampling and testing, providing valuable insights for future surveillance programs in the Latin American region.

7.
bioRxiv ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38370752

RESUMEN

Ecuador is a tropical country reporting Dengue virus (DENV) outbreaks with areas of hyperendemic viral transmission. Entomo-virological surveillance and monitoring effort conducted in the Northwestern border province of Esmeraldas in April 2022, five pools of female Aedes aegypti mosquitoes from a rural community tested positive for DENV serotype 2 by RT-qPCR. One pool was sequenced by Illumina MiSeq, and it corresponded to genotype III Southern Asian-American. Comparison with other genomes revealed genetic similarity to a human DENV genome sequenced in 2021, also from Esmeraldas. Potential introduction events to the country could have originated from Colombia, considering the vicinity of the collection sites to the neighboring country and high human movement. The inclusion of genomic information complements entomo-virological surveillance, providing valuable insights into genetic variants. This contribution enhances our understanding of Dengue virus (DENV) epidemiology in rural areas and guides evidence-based decisions for surveillance and interventions.

8.
Microbiol Spectr ; 12(4): e0274123, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38364080

RESUMEN

Human populations can be affected in unpredictable ways by the emergence and spread of zoonotic diseases. The COVID-19 (coronavirus disease of 2019) pandemic was a reminder of how devastating these events can be if left unchecked. However, once they have spread globally, the impact of these diseases when entering non-exposed wildlife populations is unknown. The current study reports the infection of brown-headed spider monkeys (Ateles fusciceps) at a wildlife rescue center in Ecuador. Four monkeys were hospitalized, and all tested positive for SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2) by RT-qPCR (Quantitative Reverse Transcription PCR). Fecal samples (n = 12) from monkeys at the rescue center also tested positive; three zookeepers responsible for feeding and deworming the monkeys also tested positive, suggesting human-animal transmission. Whole genome sequencing identified most samples' omicron clade 22B BA.5 lineage. These findings highlight the threat posed by an emerging zoonotic disease in wildlife species and the importance of preventing spillover and spillback events during epidemic or pandemic events.IMPORTANCEAlthough COVID-19 (coronavirus disease of 2019) has been primarily contained in humans through widespread vaccination, the impact and incidence of SARS-CoV-2 (Severe acute respiratory syndrome coronavirus) and its transmission and epidemiology in wildlife may need to be addressed. In some natural environments, the proximity of animals to humans is difficult to control, creating perfect scenarios where susceptible wildlife can acquire the virus from humans. In these places, it is essential to understand how transmission can occur and to develop protocols to prevent infection. This study reports the infection of brown-headed spider monkeys with SARS-CoV-2, a red-listed monkey species, at a wildlife recovery center in Ecuador. This study reports the infection of brown-headed spider monkeys with SARS-CoV-2, indicating the potential for transmission between humans and wildlife primates and the importance of preventing such events in the future.


Asunto(s)
Atelinae , COVID-19 , Animales , Humanos , Animales Salvajes , COVID-19/epidemiología , COVID-19/veterinaria , Ecuador/epidemiología , SARS-CoV-2/genética , Zoonosis/epidemiología , América del Sur , Pandemias
9.
PLoS Negl Trop Dis ; 18(1): e0011408, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38295108

RESUMEN

The distribution and intensity of viral diseases transmitted by Aedes aegypti mosquitoes, including dengue, have rapidly increased over the last century. Here, we study dengue virus (DENV) transmission across the ecologically and demographically distinct regions or Ecuador. We analyzed province-level age-stratified dengue incidence data from 2000-2019 using catalytic models to estimate the force of infection of DENV over eight decades. We found that provinces established endemic DENV transmission at different time periods. Coastal provinces with the largest and most connected cities had the earliest and highest increase in DENV transmission, starting around 1980 and continuing to the present. In contrast, remote and rural areas with reduced access, like the northern coast and the Amazon regions, experienced a rise in DENV transmission and endemicity only in the last 10 to 20 years. The newly introduced chikungunya and Zika viruses have age-specific distributions of hospital-seeking cases consistent with recent emergence across all provinces. To evaluate factors associated with geographic differences in DENV transmission potential, we modeled DENV vector risk using 11,693 Aedes aegypti presence points to the resolution of 1 hectare. In total, 56% of the population of Ecuador, including in provinces identified as having increasing DENV transmission in our models, live in areas with high risk of Aedes aegypti, with population size, trash collection, elevation, and access to water as important determinants. Our investigation serves as a case study of the changes driving the expansion of DENV and other arboviruses globally and suggest that control efforts should be expanded to semi-urban and rural areas and to historically isolated regions to counteract increasing dengue outbreaks.


Asunto(s)
Aedes , Virus del Dengue , Dengue , Infección por el Virus Zika , Virus Zika , Animales , Humanos , Ecuador/epidemiología , Mosquitos Vectores , Factores de Riesgo
10.
PLoS Negl Trop Dis ; 17(8): e0010831, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37552669

RESUMEN

BACKGROUND: Transmission models have a long history in the study of mosquito-borne disease dynamics. The mosquito biting rate (MBR) is an important parameter in these models, however, estimating its value empirically is complex. Modeling studies obtain biting rate values from various types of studies, each of them having its strengths and limitations. Thus, understanding these study designs and the factors that contribute to MBR estimates and their variability is an important step towards standardizing these estimates. We do this for an important arbovirus vector Aedes aegypti. METHODOLOGY/PRINCIPAL FINDINGS: We perform a systematic review using search terms such as 'biting rate' and 'biting frequency' combined with 'Aedes aegypti' ('Ae. aegypti' or 'A. aegypti'). We screened 3,201 articles from PubMed and ProQuest databases, of which 21 met our inclusion criteria. Two broader types of studies are identified: human landing catch (HLC) studies and multiple feeding studies. We analyze the biting rate data provided as well as the methodologies used in these studies to characterize the variability of these estimates across temporal, spatial, and environmental factors and to identify the strengths and limitations of existing methodologies. Based on these analyses, we present two approaches to estimate population mean per mosquito biting rate: one that combines studies estimating the number of bites taken per gonotrophic cycle and the gonotrophic cycle duration, and a second that uses data from histological studies. Based on one histological study dataset, we estimate biting rates of Ae. aegypti (0.41 and 0.35 bite/mosquito-day in Thailand and Puerto Rico, respectively). CONCLUSIONS/SIGNIFICANCE: Our review reinforces the importance of engaging with vector biology when using mosquito biting rate data in transmission modeling studies. For Ae. aegypti, this includes understanding the variation of the gonotrophic cycle duration and the number of bites per gonotrophic cycle, as well as recognizing the potential for spatial and temporal variability. To address these variabilities, we advocate for site-specific data and the development of a standardized approach to estimate the biting rate.


Asunto(s)
Aedes , Mordeduras y Picaduras de Insectos , Animales , Humanos , Mosquitos Vectores , Mordeduras y Picaduras de Insectos/epidemiología , Tailandia/epidemiología , Conducta Alimentaria
11.
medRxiv ; 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37398346

RESUMEN

The distribution and intensity of viral diseases transmitted by Aedes aegypti mosquitoes, including dengue, have rapidly increased over the last century. Ecuador is an interesting country to study drivers of dengue virus (DENV) transmission given it has multiple ecologically and demographically distinct regions. Here, we analyze province-level age-stratified dengue prevalence data from 2000-2019 using catalytic models to estimate the force of infection of DENV over eight decades and across provinces in Ecuador. We found that provinces established endemic DENV transmission at different time periods. Coastal provinces with the largest and most connected cities had the earliest and highest increase in DENV transmission, starting around 1980 and continuing to the present. In contrast, remote and rural areas with reduced access, like the northern coast and the Amazon regions, experienced a rise in DENV transmission and endemicity only in the last 10 to 20 years. The newly introduced chikungunya and Zika viruses have distinct age-specific prevalence distributions consistent with recent emergence across all provinces. We evaluated factors to the resolution of 1 hectare associated with geographic differences in vector suitability and arbovirus disease in the last 10 years by modeling 11,693 A aegypti presence points and 73,550 arbovirus cases. In total, 56% of the population of Ecuador lives in areas with high risk of Aedes aegypti. Most suitable provinces had hotspots for arbovirus disease risk, with population size, elevation, sewage connection, trash collection, and access to water as important determinants. Our investigation serves as a case study of the changes driving the expansion of DENV and other arboviruses globally and suggest that control efforts should be expanded to semi-urban and rural areas and to historically isolated regions to counteract increasing dengue outbreaks.

12.
PLoS Negl Trop Dis ; 17(6): e0011333, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37289678

RESUMEN

Dengue has historically been considered an urban disease associated with dense human populations and the built environment. Recently, studies suggest increasing dengue virus (DENV) transmission in rural populations. It is unclear whether these reports reflect recent spread into rural areas or ongoing transmission that was previously unnoticed, and what mechanisms are driving this rural transmission. We conducted a systematic review to synthesize research on dengue in rural areas and apply this knowledge to summarize aspects of rurality used in current epidemiological studies of DENV transmission given changing and mixed environments. We described how authors defined rurality and how they defined mechanisms for rural dengue transmission. We systematically searched PubMed, Web of Science, and Embase for articles evaluating dengue prevalence or cumulative incidence in rural areas. A total of 106 articles published between 1958 and 2021 met our inclusion criteria. Overall, 56% (n = 22) of the 48 estimates that compared urban and rural settings reported rural dengue incidence as being as high or higher than in urban locations. In some rural areas, the force of infection appears to be increasing over time, as measured by increasing seroprevalence in children and thus likely decreasing age of first infection, suggesting that rural dengue transmission may be a relatively recent phenomenon. Authors characterized rural locations by many different factors, including population density and size, environmental and land use characteristics, and by comparing their context to urban areas. Hypothesized mechanisms for rural dengue transmission included travel, population size, urban infrastructure, vector and environmental factors, among other mechanisms. Strengthening our understanding of the relationship between rurality and dengue will require a more nuanced definition of rurality from the perspective of DENV transmission. Future studies should focus on characterizing details of study locations based on their environmental features, exposure histories, and movement dynamics to identify characteristics that may influence dengue transmission.


Asunto(s)
Virus del Dengue , Dengue , Niño , Humanos , Estudios Seroepidemiológicos , Estudios Longitudinales , Población Rural
13.
Emerg Infect Dis ; 29(5): 888-897, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37080979

RESUMEN

Although dengue is typically considered an urban disease, rural communities are also at high risk. To clarify dynamics of dengue virus (DENV) transmission in settings with characteristics generally considered rural (e.g., lower population density, remoteness), we conducted a phylogenetic analysis in 6 communities in northwestern Ecuador. DENV RNA was detected by PCR in 121/488 serum samples collected from febrile case-patients during 2019-2021. Phylogenetic analysis of 27 samples from Ecuador and other countries in South America confirmed that DENV-1 circulated during May 2019-March 2020 and DENV-2 circulated during December 2020-July 2021. Combining locality and isolation dates, we found strong evidence that DENV entered Ecuador through the northern province of Esmeraldas. Phylogenetic patterns suggest that, within this province, communities with larger populations and commercial centers were more often the source of DENV but that smaller, remote communities also play a role in regional transmission dynamics.


Asunto(s)
Virus del Dengue , Dengue , Humanos , Filogenia , Ecuador/epidemiología , América del Sur
14.
Am J Trop Med Hyg ; 108(5): 981-986, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37037437

RESUMEN

Mosquito-borne diseases are a global burden; however, current methods of evaluating human-mosquito contact rates are expensive and time consuming. Validated surveys of self-reported mosquito bites may be an inexpensive way to determine mosquito presence and bite exposure level in an area, but this remains untested. In this study, a survey of self-reported mosquito bites was validated against household mosquito abundance from six communities in Esmeraldas, Ecuador. From February 2021 to July 2022, households were interviewed monthly, and five questions were used to ask participants how often they were bitten by mosquitoes at different times during the day. At the same time, adult mosquitoes were collected using a Prokopack aspirator. Species were identified and counted. Survey responses were compared with the total number of mosquitoes found in the home using negative binomial regression. More frequent self-reported mosquito bites were significantly associated with higher numbers of collected adult mosquitoes. These associations were driven by the prevalence of the dominant genera, Culex. These results suggest that surveys of perceived mosquito bites relate to actual mosquito presence, making them a potentially useful tool for determining the impact of vector-control interventions on community perceptions of risk but less useful for assessing the risk of nondominant species such as Aedes aegypti. Further work is needed to examine the robustness of these results in other contexts.


Asunto(s)
Aedes , Mordeduras y Picaduras de Insectos , Adulto , Animales , Humanos , Autoinforme , Mosquitos Vectores/fisiología , Mordeduras y Picaduras de Insectos/epidemiología , Ecuador/epidemiología , Composición Familiar , Aedes/fisiología
15.
Am J Trop Med Hyg ; 107(6): 1226-1233, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36375454

RESUMEN

Dengue virus (DENV) reemerged in the Americas in the 1980s and 1990s, whereas chikungunya virus (CHIKV) emerged in 2014. Although CHIKV produced large epidemics from 2014 to 2017, dengue fever has been the prominent arboviral disease identified through passive surveillance, bringing to question the degree to which cases are misdiagnosed. To address this concern, we conducted an active household-based surveillance of arboviral-like illnesses in six rural and remote communities in northern coastal Ecuador from May 2019 to February 2020. Although passive surveillance conducted by the Ecuadorian Ministry of Health reported only DENV cases in the region, more than 70% of the arbovirus-like illnesses detected by active surveillance in our study were positive for CHIKV. These findings underline the need for active surveillance of arboviral infections with laboratory confirmation, especially in rural communities where arboviral illnesses are more likely to be underreported.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Virus del Dengue , Dengue , Humanos , Fiebre Chikungunya/diagnóstico , Fiebre Chikungunya/epidemiología , Dengue/diagnóstico , Ecuador/epidemiología , Población Rural , Brotes de Enfermedades
16.
Front Cell Infect Microbiol ; 12: 951383, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36164552

RESUMEN

SARS-CoV-2 reinfection is defined as a new infection with a different virus variant in an individual who has already recovered from a previous episode of COVID-19. The first case of reinfection in the world was described in August 2020, since then, reinfections have increased over time and their incidence has fluctuated with specific SARS-CoV-2 variant waves. Initially, reinfections were estimated to represent less than 1% of total COVID-19 infections. With the advent of the Omicron variant, reinfections became more frequent, representing up to 10% of cases (based on data from developed countries). The frequency of reinfections in Latin America has been scarcely reported. The current study shows that in Ecuador, the frequency of reinfections has increased 10-fold following the introduction of Omicron, after 22 months of surveillance in a single center of COVID-19 diagnostics. Suspected reinfections were identified retrospectively from a database of RT-qPCR-positive patients. Cases were confirmed by sequencing viral genomes from the first and second infections using the ONT MinION platform. Monthly surveillance showed that the main incidence peaks of reinfections were reached within four to five months, coinciding with the increase of COVID-19 cases in the country, suggesting that the emergence of reinfections is related to higher exposure to the virus during outbreaks. This study performed the longest monitoring of SARS-CoV-2 reinfections, showing an occurrence at regular intervals of 4-5 months and confirming a greater propensity of Omicron to cause reinfections.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/epidemiología , Ecuador/epidemiología , Humanos , Reinfección , Estudios Retrospectivos , SARS-CoV-2/genética
17.
Microbiol Spectr ; 10(3): e0247121, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35612315

RESUMEN

Serological surveillance studies of infectious diseases provide population-level estimates of infection and antibody prevalence, generating crucial insight into population-level immunity, risk factors leading to infection, and effectiveness of public health measures. These studies traditionally rely on detection of pathogen-specific antibodies in samples derived from venipuncture, an expensive and logistically challenging aspect of serological surveillance. During the COVID-19 pandemic, guidelines implemented to prevent the spread of SARS-CoV-2 infection made collection of venous blood logistically difficult at a time when SARS-CoV-2 serosurveillance was urgently needed. Dried blood spots (DBS) have generated interest as an alternative to venous blood for SARS-CoV-2 serological applications due to their stability, low cost, and ease of collection; DBS samples can be self-generated via fingerprick by community members and mailed at ambient temperatures. Here, we detail the development of four DBS-based SARS-CoV-2 serological methods and demonstrate their implementation in a large serological survey of community members from 12 cities in the East Bay region of the San Francisco metropolitan area using at-home DBS collection. We find that DBS perform similarly to plasma/serum in enzyme-linked immunosorbent assays and commercial SARS-CoV-2 serological assays. In addition, we show that DBS samples can reliably detect antibody responses months postinfection and track antibody kinetics after vaccination. Implementation of DBS enabled collection of valuable serological data from our study population to investigate changes in seroprevalence over an 8-month period. Our work makes a strong argument for the implementation of DBS in serological studies, not just for SARS-CoV-2, but any situation where phlebotomy is inaccessible. IMPORTANCE Estimation of community-level antibody responses to SARS-CoV-2 from infection or vaccination is critical to inform public health responses. Traditional studies of antibodies rely on collection of blood via venipuncture, an invasive procedure not amenable to pandemic-related social-distancing measures. Dried blood spots (DBS) are an alternative to venipuncture, since they can be self-collected by study participants at home and do not require refrigeration for shipment or storage. However, DBS-based assays to measure antibody levels to SARS-CoV-2 have not been widely utilized. Here, we show that DBS are comparable to blood as a sampling method for antibody responses to SARS-CoV-2 infection and vaccination over time measured using four distinct serological assays. The DBS format enabled antibody surveillance in a longitudinal cohort where study participants self-collected samples, ensuring the participants' safety during an ongoing pandemic. Our work demonstrates that DBS are an excellent sampling method for measuring antibody responses whenever venipuncture is impractical.


Asunto(s)
COVID-19 , Anticuerpos Antivirales , COVID-19/diagnóstico , COVID-19/epidemiología , Estudios Epidemiológicos , Humanos , Pandemias , SARS-CoV-2 , Estudios Seroepidemiológicos
18.
Insects ; 13(3)2022 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-35323603

RESUMEN

Aedes albopictus, also known as the tiger mosquito, is widespread worldwide across tropical, subtropical, and temperate regions. This insect is associated with the transmission of several vector-borne diseases, and, as such, monitoring its distribution is highly important for public health. In Ecuador, Ae. albopictus was first reported in 2017 in Guayaquil. Since then, the vector has been identified in the Northeastern lowlands and the Amazon basin. This study aims to determine the genetic diversity of Ecuadorian populations of Ae. albopictus through the analysis of the mitochondrial gene COI and to describe the potential distribution areas of this species within the country. The genetic diversity was determined by combining phylogenetic and population genetics analyses of five localities in Ecuador. Results showed two haplotypes in the Ecuadorian populations of Ae. albopictus. Haplotype 1 (H1) was found in the coastal and Amazon individuals, while haplotype 2 (H2) was only found in the three northeastern lowlands sites. In a worldwide context, H1 is the most widespread in 21 countries with temperate and tropical habitats. In contrast, H2 distribution is limited to five countries in tropical regions, suggesting fewer adaptation traits. Our prediction model showed a suitable habitat for Ae. albopictus in all regions (coastal, Amazon basin, and Andean lowland regions and the Galápagos Islands) of Ecuador. Hence, understanding different aspects of the vector can help us implement better control strategies for surveillance and vectorial control in Ecuador.

19.
PLOS Glob Public Health ; 2(8): e0000647, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36962725

RESUMEN

Comprehensive data on transmission mitigation behaviors and both SARS-CoV-2 infection and serostatus are needed from large, community-based cohorts to identify COVID-19 risk factors and the impact of public health measures. We conducted a longitudinal, population-based study in the East Bay Area of Northern California. From July 2020-March 2021, approximately 5,500 adults were recruited and followed over three data collection rounds to investigate the association between geographic and demographic characteristics and transmission mitigation behavior with SARS-CoV-2 prevalence. We estimated the populated-adjusted prevalence of antibodies from SARS-CoV-2 infection and COVID-19 vaccination, and self-reported COVID-19 test positivity. Population-adjusted SARS-CoV-2 seroprevalence was low, increasing from 1.03% (95% CI: 0.50-1.96) in Round 1 (July-September 2020), to 1.37% (95% CI: 0.75-2.39) in Round 2 (October-December 2020), to 2.18% (95% CI: 1.48-3.17) in Round 3 (February-March 2021). Population-adjusted seroprevalence of COVID-19 vaccination was 21.64% (95% CI: 19.20-24.34) in Round 3, with White individuals having 4.35% (95% CI: 0.35-8.32) higher COVID-19 vaccine seroprevalence than individuals identifying as African American or Black, American Indian or Alaskan Native, Asian, Hispanic, two or more races, or other. No evidence for an association between transmission mitigation behavior and seroprevalence was observed. Despite >99% of participants reporting wearing masks individuals identifying as African American or Black, American Indian or Alaskan Native, Asian, Hispanic, two or more races, or other, as well as those in lower-income households, and lower-educated individuals had the highest SARS-CoV-2 seroprevalence and lowest vaccination seroprevalence. Results demonstrate that more effective policies are needed to address these disparities and inequities.

20.
medRxiv ; 2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-34341804

RESUMEN

Accurate tracing of epidemic spread over space enables effective control measures. We examined three metrics of infection and disease in a pediatric cohort (N≈3,000) over two chikungunya and one Zika epidemic, and in a household cohort (N=1,793) over one COVID-19 epidemic in Managua, Nicaragua. We compared spatial incidence rates (cases/total population), infection risks (infections/total population), and disease risks (cases/infected population). We used generalized additive and mixed-effects models, Kulldorf's spatial scan statistic, and intracluster correlation coefficients. Across different analyses and all epidemics, incidence rates considerably underestimated infection and disease risks, producing large and spatially non-uniform biases distinct from biases due to incomplete case ascertainment. Infection and disease risks exhibited distinct spatial patterns, and incidence clusters inconsistently identified areas of either risk. While incidence rates are commonly used to infer infection and disease risk in a population, we find that this can induce substantial biases and adversely impact policies to control epidemics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...