RESUMEN
Esophageal cancer is a highly lethal malignancy, representing 5% of all cancer-related deaths. The two main subtypes are esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC). While most research has focused on ESCC, few studies have analyzed EAC for transcriptional signatures linked to diagnosis or prognosis. In this study, we utilized single-cell RNA sequencing and bulk RNA sequencing to identify specific immune cell types that contribute to anti-tumor responses, as well as differentially expressed genes (DEGs). We have characterized transcriptional signatures, validated against a wide cohort of TCGA patients, that are capable of predicting clinical outcomes and the prognosis of EAC post-surgery with efficacy comparable to the currently accepted prognostic factors. In conclusion, our findings provide insights into the immune landscape and therapeutic targets of EAC, proposing novel immunological biomarkers for predicting prognosis, aiding in patient stratification for post-surgical outcomes, follow-up, and personalized adjuvant therapy decisions.
RESUMEN
Tumor-associated macrophages (TAMs) are key components of the tumor microenvironment (TME). In colorectal liver metastasis (CLM), TAM morphology correlates with prognosis, with smaller TAMs (S-TAMs) conferring a more favorable prognosis than larger TAMs (L-TAMs). However, the metabolic profile of in vivo human TAM populations remains unknown. Multiparametric flow cytometry was used to freshly isolate S- and L-TAMs from surgically resected CLM patients (n = 14S-, 14L-TAMs). Mass spectrometry-based metabolomics analyses were implemented for the metabolic characterization of TAM populations. Gene expression analysis and protein activity were used to support the biochemical effects of the enzyme-substrate link between riboflavin and (lysine-specific demethylase 1A, LSD1) with TAM morphologies. L-TAMs were characterized by a positive correlation and a strong association between riboflavin and TAM morphologies. Riboflavin in both L-TAMs and in-vitro M2 polarized macrophages modulates LSD1 protein expression and activity. The inflammatory stimuli promoted by TNFα induced the increased expression of riboflavin transporter SLC52A3 and LSD1 in M2 macrophages. The modulation of the riboflavin-LSD1 axis represents a potential target for reprogramming TAM subtypes, paving the way for promising anti-tumor therapeutic strategies.
Asunto(s)
Neoplasias Colorrectales , Neoplasias Hepáticas , Humanos , Macrófagos Asociados a Tumores/metabolismo , Macrófagos/metabolismo , Neoplasias Hepáticas/patología , Pronóstico , Neoplasias Colorrectales/patología , Microambiente Tumoral , Proteínas de Transporte de Membrana/metabolismoRESUMEN
Liquid biopsy (LB) for prostate cancer (PCa) detection could represent an alternative to biopsy. Seminal fluid (SF) is a source of PCa-specific biomarkers, as 40% of ejaculate derives from the prostate. We tested the feasibility of an SF-based LB by evaluating the yield of semen self-sampling in a cohort of >750 patients with clinically localized PCa. The overall SF collection yield was 18.2% (39% when considering only compliant patients), with about a half of the patients (53.15%) not consenting to SF donation. Independent favorable predictors for SF collection were younger age and lower prostate volume. We implemented a protocol to enrich prostate-derived cells by multi-color flow cytometry and applied it on SF and urine samples from 100 patients. The number of prostate-enriched cells (SYTO-16+ PSMA+ CD45-) was variable, with higher numbers of cells isolated from SF than urine (p value < 0.001). Putative cancer cells (EpCAMhigh) were 2% of isolated cells in both specimens. The fraction of EpCAMhigh cells over prostate-enriched cells (PSMA+) significantly correlated with patient age in both semen and urine, but not with other clinical parameters, such as Gleason Score, ISUP, or TNM stage. Hence, enumeration of prostate-derived cells is not sufficient to guide PCa diagnosis; additional molecular analyses to detect patient-specific cancer lesions will be needed.
RESUMEN
Patients with colorectal liver metastasis (CLM) present with heterogenous clinical outcomes and improved classification is needed to ameliorate the therapeutic output. Macrophages (MÏ) hold promise as prognostic classifiers and therapeutic targets. Here, stemming from a single-cell analysis of mononuclear phagocytes infiltrating human CLM, we identified two MÏ markers associated with distinct populations with opposite clinical relevance. The invasive margin of CLM was enriched in pro-inflammatory monocyte-derived MÏ (MoMÏ) expressing the monocytic marker SERPINB2, and a more differentiated population, tumor-associated MÏ (TAM), expressing glycoprotein nonmetastatic melanoma protein B (GPNMB). SERPINB2+ MoMÏ had an early inflammatory profile, whereas GPNMB+ TAMs were enriched in pathways of matrix degradation, angiogenesis, and lipid metabolism and were found closer to the tumor margin, as confirmed by spatial transcriptomics on CLM specimens. In a cohort of patients, a high infiltration of SERPINB2+ cells independently associated with longer disease-free survival (DFS; P = 0.033), whereas a high density of GPNMB+ cells correlated with shorter DFS (P = 0.012) and overall survival (P = 0.002). Cell-cell interaction analysis defined opposing roles for MoMÏ and TAMs, suggesting that SERPINB2+ and GPNMB+ cells are discrete populations of MÏ and may be exploited for further translation to an immune-based stratification tool. This study provides evidence of how multi-omics approaches can identify nonredundant, clinically relevant markers for further translation to immune-based patient stratification tools and therapeutic targets. GPNMB has been shown to set MÏ in an immunosuppressive mode. Our high dimensional analyses provide further evidence that GPNMB is a negative prognostic indicator and a potential player in the protumor function of MÏ populations.
Asunto(s)
Neoplasias Colorrectales , Neoplasias Hepáticas , Humanos , Pronóstico , Macrófagos/metabolismo , Monocitos/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Colorrectales/metabolismo , Glicoproteínas de Membrana/metabolismoRESUMEN
Monocytes are critical cells of the immune system but their role as effectors is relatively poorly understood, as they have long been considered only as precursors of tissue macrophages or dendritic cells. Moreover, it is known that this cell type is heterogeneous, but our understanding of this aspect is limited to the broad classification in classical/intermediate/non-classical monocytes, commonly based on their expression of only two markers, i.e. CD14 and CD16. We deeply dissected the heterogeneity of human circulating monocytes in healthy donors by transcriptomic analysis at single-cell level and identified 9 distinct monocyte populations characterized each by a profile suggestive of specialized functions. The classical monocyte subset in fact included five distinct populations, each enriched for transcriptomic gene sets related to either inflammatory, neutrophil-like, interferon-related, and platelet-related pathways. Non-classical monocytes included two distinct populations, one of which marked specifically by elevated expression levels of complement components. Intermediate monocytes were not further divided in our analysis and were characterized by high levels of human leukocyte antigen (HLA) genes. Finally, we identified one cluster included in both classical and non-classical monocytes, characterized by a strong cytotoxic signature. These findings provided the rationale to exploit the relevance of newly identified monocyte populations in disease evolution. A machine learning approach was developed and applied to two single-cell transcriptome public datasets, from gastrointestinal cancer and Coronavirus disease 2019 (COVID-19) patients. The dissection of these datasets through our classification revealed that patients with advanced cancers showed a selective increase in monocytes enriched in platelet-related pathways. Of note, the signature associated with this population correlated with worse prognosis in gastric cancer patients. Conversely, after immunotherapy, the most activated population was composed of interferon-related monocytes, consistent with an upregulation in interferon-related genes in responder patients compared to non-responders. In COVID-19 patients we confirmed a global activated phenotype of the entire monocyte compartment, but our classification revealed that only cytotoxic monocytes are expanded during the disease progression. Collectively, this study unravels an unexpected complexity among human circulating monocytes and highlights the existence of specialized populations differently engaged depending on the pathological context.
Asunto(s)
COVID-19 , Neoplasias Gastrointestinales , Humanos , Monocitos , Factores Inmunológicos/metabolismo , Interferones/metabolismo , Antígenos HLA/metabolismoRESUMEN
BACKGROUND: More than 50% of all patients with colorectal cancer (CRC) develop liver metastases (CLM), a clinical condition characterized by poor prognosis and lack of reliable prognostic markers. Vδ1 cells are a subset of tissue-resident gamma delta (γδ) T lymphocytes endowed with a broad array of antitumor functions and showing a natural high tropism for the liver. However, little is known about their impact in the clinical outcomes of CLM. METHODS: We isolated human γδ T cells from peripheral blood (PB) and peritumoral (PT) tissue of 93 patients undergone surgical procedures to remove CLM. The phenotype of freshly purified γδ T cells was assessed by multiparametric flow cytometry, the transcriptional profiles by single cell RNA-sequencing, the functional annotations by Gene Ontology enrichment analyses and the clonotype by γδ T cell receptor (TCR)-sequencing. RESULTS: The microenvironment of CLM is characterized by a heterogeneous immune infiltrate comprising different subsets of γδ tumor-infiltrating lymphocytes (TILs) able to egress the liver and re-circulate in PB. Vδ1 T cells represent the largest population of γδ TILs within the PT compartment of CLM that is greatly enriched in Vδ1 T effector (TEF) cells expressing constitutive high levels of CD69. These Vδ1 CD69+ TILs express a distinct phenotype and transcriptional signature, show high antitumor potential and correlate with better patient clinical outcomes in terms of lower numbers of liver metastatic lesions and longer overall survival (OS). Moreover, intrahepatic CD69+ Vδ1 TILs can egress CLM tissue to re-circulate in PB, where they retain a phenotype, transcriptional signature and TCR clonal repertoires resembling their liver origin. Importantly, even the increased frequencies of the CD69+ terminally differentiated (TEMRA) Vδ1 cells in PB of patients with CLM significantly correlate with longer OS. The positive prognostic score of high frequencies of CD69+ TEMRA Vδ1 cells in PB is independent from the neoadjuvant chemotherapy and immunotherapy regimens administered to patients with CLM prior surgery. CONCLUSIONS: The enrichment of tissue-resident CD69+ Vδ1 TEMRA cells re-circulating at high frequencies in PB of patients with CLM limits tumor progression and represents a new important clinical tool to either predict the natural history of CLM or develop alternative therapeutic protocols of cellular therapies.
Asunto(s)
Neoplasias Colorrectales , Subgrupos de Linfocitos T , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Humanos , Inmunoterapia , Linfocitos Infiltrantes de Tumor , Receptores de Antígenos de Linfocitos T gamma-delta , Subgrupos de Linfocitos T/citología , Microambiente TumoralRESUMEN
BACKGROUND & AIMS: The landscape and function of the immune infiltrate of intrahepatic cholangiocarcinoma (iCCA), a rare, yet aggressive tumor of the biliary tract, remains poorly characterized, limiting development of successful immunotherapies. Herein, we aimed to define the molecular characteristics of tumor-infiltrating leukocytes with a special focus on CD4+ regulatory T cells (Tregs). METHODS: We used high-dimensional single-cell technologies to characterize the T-cell and myeloid compartments of iCCA tissues, comparing these with their tumor-free peritumoral and circulating counterparts. We further used genomics and cellular assays to define the iCCA-specific role of a novel transcription factor, mesenchyme homeobox 1 (MEOX1), in Treg biology. RESULTS: We found poor infiltration of putative tumor-specific CD39+ CD8+ T cells accompanied by abundant infiltration of hyperactivated CD4+ Tregs. Single-cell RNA-sequencing identified an altered network of transcription factors in iCCA-infiltrating compared to peritumoral T cells, suggesting reduced effector functions by tumor-infiltrating CD8+ T cells and enhanced immunosuppression by CD4+ Tregs. Specifically, we found that expression of MEOX1 was highly enriched in tumor-infiltrating Tregs, and demonstrated that MEOX1 overexpression is sufficient to reprogram circulating Tregs to acquire the transcriptional and epigenetic landscape of tumor-infiltrating Tregs. Accordingly, enrichment of the MEOX1-dependent gene program in Tregs was strongly associated with poor prognosis in a large cohort of patients with iCCA. CONCLUSIONS: We observed abundant infiltration of hyperactivated CD4+ Tregs in iCCA tumors along with reduced CD8+ T-cell effector functions. Interfering with hyperactivated Tregs should be explored as an approach to enhance antitumor immunity in iCCA. LAY SUMMARY: Immune cells have the potential to slow or halt the progression of tumors. However, some tumors, such as intrahepatic cholangiocarcinoma, are associated with very limited immune responses (and infiltration of cancer-targeting immune cells). Herein, we show that a specific population of regulatory T cells (a type of immune cell that actually suppresses the immune response) are hyperactivated in intrahepatic cholangiocarcinoma. Targeting these cells could enable cancer-targeting immune cells to act more effectively and should be looked at as a potential therapeutic approach to this aggressive cancer type.
Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/patología , Colangiocarcinoma/patología , ARN/metabolismo , Linfocitos T Reguladores , Factores de Transcripción/metabolismo , Microambiente Tumoral , Análisis de la Célula IndividualRESUMEN
Tumor-associated macrophages (TAMs) are correlated with the progression of prostatic adenocarcinoma (PCa). The mechanistic basis of this correlation and therapeutic strategies to target TAMs in PCa remain poorly defined. Here, single-cell RNA sequencing was used to profile the transcriptional landscape of TAMs in human PCa, leading to identification of a subset of macrophages characterized by dysregulation in transcriptional pathways associated with lipid metabolism. This subset of TAMs correlates positively with PCa progression and shorter disease-free survival and is characterized by an accumulation of lipids that is dependent on Marco. Mechanistically, cancer cell-derived IL-1ß enhances Marco expression on macrophages, and reciprocally, cancer cell migration is promoted by CCL6 released by lipid-loaded TAMs. Moreover, administration of a high-fat diet to tumor-bearing mice raises the abundance of lipid-loaded TAMs. Finally, targeting lipid accumulation by Marco blockade hinders tumor growth and invasiveness and improves the efficacy of chemotherapy in models of PCa, pointing to combinatorial strategies that may influence patient outcomes.
Asunto(s)
Lípidos , Neoplasias de la Próstata/inmunología , Neoplasias de la Próstata/metabolismo , Microambiente Tumoral , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Animales , Plasticidad de la Célula/genética , Plasticidad de la Célula/inmunología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Xenoinjertos , Humanos , Metabolismo de los Lípidos , Lípidos/química , Masculino , Redes y Vías Metabólicas , Ratones , Neoplasias de la Próstata/patología , Análisis de la Célula IndividualRESUMEN
PBX1 regulates the balance between self-renewal and differentiation of hematopoietic stem cells and maintains proto-oncogenic transcriptional pathways in early progenitors. Its increased expression was found in myeloproliferative neoplasm (MPN) patients bearing the JAK2V617F mutation. To investigate if PBX1 contributes to MPN, and to explore its potential as therapeutic target, we generated the JP mouse strain, in which the human JAK2 mutation is induced in the absence of PBX1. Typical MPN features, such as thrombocythemia and granulocytosis, did not develop without PBX1, while erythrocytosis, initially displayed by JP mice, gradually resolved over time; splenic myeloid metaplasia and in vitro cytokine independent growth were absent upon PBX1 inactivation. The aberrant transcriptome in stem/progenitor cells from the MPN model was reverted by the absence of PBX1, demonstrating that PBX1 controls part of the molecular pathways deregulated by the JAK2V617F mutation. Modulation of the PBX1-driven transcriptional program might represent a novel therapeutic approach.
Asunto(s)
Regulación Neoplásica de la Expresión Génica , Células Madre Hematopoyéticas/metabolismo , Trastornos Mieloproliferativos/genética , Neoplasias/genética , Factor de Transcripción 1 de la Leucemia de Células Pre-B/genética , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Perfilación de la Expresión Génica/métodos , Humanos , Ratones Noqueados , Ratones Transgénicos , Mutación , Trastornos Mieloproliferativos/metabolismo , Trastornos Mieloproliferativos/patología , Neoplasias/metabolismo , Neoplasias/patología , Factor de Transcripción 1 de la Leucemia de Células Pre-B/metabolismo , RNA-Seq/métodos , Transducción de Señal/genéticaRESUMEN
A considerable proportion of cancer patients are resistant or only partially responsive to immune checkpoint blockade immunotherapy. Tumor-Associated Macrophages (TAMs) infiltrating the tumor stroma suppress the adaptive immune responses and, hence, promote tumor immune evasion. Depletion of TAMs or modulation of their protumoral functions is actively pursued, with the purpose of relieving this state of immunesuppression. We previously reported that trabectedin, a registered antitumor compound, selectively reduces monocytes and TAMs in treated tumors. However, its putative effects on the adaptive immunity are still unclear. In this study, we investigated whether treatment of tumor-bearing mice with trabectedin modulates the presence and functional activity of T-lymphocytes. In treated tumors, there was a significant upregulation of T cell-associated genes, including CD3, CD8, perforin, granzyme B, and IFN-responsive genes (MX1, CXCL10, and PD-1), indicating that T lymphocytes were activated after treatment. Notably, the mRNA levels of the Pdcd1 gene, coding for PD-1, were strongly increased. Using a fibrosarcoma model poorly responsive to PD-1-immunotherapy, treatment with trabectedin prior to anti-PD-1 resulted in improved antitumor efficacy. In conclusion, pretreatment with trabectedin enhances the therapeutic response to checkpoint inhibitor-based immunotherapy. These findings provide a good rational for the combination of trabectedin with immunotherapy regimens.
Asunto(s)
Inmunidad Adaptativa/efectos de los fármacos , Antineoplásicos Alquilantes/farmacología , Neoplasias Experimentales/inmunología , Trabectedina/farmacología , Macrófagos Asociados a Tumores/efectos de los fármacos , Animales , Fibrosarcoma/inmunología , Inhibidores de Puntos de Control Inmunológico/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Escape del Tumor/efectos de los fármacos , Escape del Tumor/inmunología , Macrófagos Asociados a Tumores/inmunologíaRESUMEN
Luminal-like breast cancer (BC) constitutes the majority of BC subtypes, but, differently from highly aggressive triple negative BC, is poorly infiltrated by the immune system. The quality of the immune infiltrate in luminal-like BCs has been poorly studied, thereby limiting further investigation of immunotherapeutic strategies. By using high-dimensional single-cell technologies, we identify heterogeneous behavior within the tissue-resident memory CD8+ T (Trm) cells infiltrating luminal-like tumors. A subset of CD127- CD39hi Trm cells, preferentially present in the tumor compared to the adjacent normal breast tissue or peripheral blood, retains enhanced degranulation capacity compared to the CD127+ CD39lo Trm counterpart ex vivo, and is specifically associated with positive prognosis. Nevertheless, such prognostic benefit is lost in the presence of highly-suppressive CCR8hi ICOShi IRF4+ effector Tregs. Thus, combinatorial strategies aiming at boosting Trm function and infiltration while relieving from Treg-mediated immunosuppression should be investigated to achieve proper tumor control in luminal-like BCs.
Asunto(s)
Apirasa/metabolismo , Neoplasias de la Mama/genética , Linfocitos T CD8-positivos/metabolismo , Neoplasias de la Mama/diagnóstico , Humanos , Pronóstico , Análisis de la Célula IndividualRESUMEN
Serum amyloid P component (SAP, also known as Pentraxin 2; APCS gene) is a component of the humoral arm of innate immunity involved in resistance to bacterial infection and regulation of tissue remodeling. Here we investigate the role of SAP in antifungal resistance. Apcs-/- mice show enhanced susceptibility to A. fumigatus infection. Murine and human SAP bound conidia, activate the complement cascade and enhance phagocytosis by neutrophils. Apcs-/- mice are defective in vivo in terms of recruitment of neutrophils and phagocytosis in the lungs. Opsonic activity of SAP is dependent on the classical pathway of complement activation. In immunosuppressed mice, SAP administration protects hosts against A. fumigatus infection and death. In the context of a study of hematopoietic stem-cell transplantation, genetic variation in the human APCS gene is associated with susceptibility to invasive pulmonary aspergillosis. Thus, SAP is a fluid phase pattern recognition molecule essential for resistance against A. fumigatus.
Asunto(s)
Aspergillus fumigatus/inmunología , Aspergilosis Pulmonar Invasiva/inmunología , Neutrófilos/inmunología , Componente Amiloide P Sérico/genética , Animales , Células Cultivadas , Variación Genética/genética , Humanos , Inmunidad Innata/inmunología , Huésped Inmunocomprometido/inmunología , Aspergilosis Pulmonar Invasiva/patología , Pulmón/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fagocitosis/inmunologíaRESUMEN
Although flow cytometry and cell sorting are widely used by immunologists both for basic and translation research, many aspects of these techniques should be optimized to obtain reproducible and meaningful data. In this chapter we provide some protocols and tips on instrument setting, multicolor panel design and T-cell immunophenotyping and proliferation assay.
Asunto(s)
Citometría de Flujo/instrumentación , Citometría de Flujo/métodos , Linfocitos T/citología , Anticuerpos , Proliferación Celular/fisiología , Supervivencia Celular/fisiología , Colorantes Fluorescentes , Humanos , Inmunofenotipificación , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/metabolismo , Sensibilidad y Especificidad , Programas Informáticos , Coloración y Etiquetado , Linfocitos T/metabolismoRESUMEN
It has long been known that in vitro polarized macrophages differ in morphology. Stemming from a conventional immunohistology observation, we set out to test the hypothesis that morphology of tumor-associated macrophages (TAMs) in colorectal liver metastasis (CLM) represents a correlate of functional diversity with prognostic significance. Density and morphological metrics of TAMs were measured and correlated with clinicopathological variables. While density of TAMs did not correlate with survival of CLM patients, the cell area identified small (S-TAM) and large (L-TAM) macrophages that were associated with 5-yr disease-free survival rates of 27.8% and 0.2%, respectively (P < 0.0001). RNA sequencing of morphologically distinct macrophages identified LXR/RXR as the most enriched pathway in large macrophages, with up-regulation of genes involved in cholesterol metabolism, scavenger receptors, MERTK, and complement. In single-cell analysis of mononuclear phagocytes from CLM tissues, S-TAM and L-TAM signatures were differentially enriched in individual clusters. These results suggest that morphometric characterization can serve as a simple readout of TAM diversity with strong prognostic significance.
Asunto(s)
Neoplasias Colorrectales/patología , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/secundario , Macrófagos Asociados a Tumores/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Polaridad Celular/inmunología , Estudios de Cohortes , Supervivencia sin Enfermedad , Femenino , Humanos , Inmunohistoquímica , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/mortalidad , Receptores X del Hígado/genética , Receptores X del Hígado/metabolismo , Masculino , Persona de Mediana Edad , Pronóstico , Análisis de Secuencia de ARN , Tasa de Supervivencia , Macrófagos Asociados a Tumores/metabolismoRESUMEN
Malignant Pleural Mesothelioma (MPM) is an aggressive tumor of the pleural lining that is usually identified at advanced stages and resistant to current therapies. Appropriate pre-clinical mouse tumor models are of pivotal importance to study its biology. Usually, tumor cells have been injected intraperitoneally or subcutaneously. Using three available murine mesothelioma cell lines with different histotypes (sarcomatoid, biphasic, epithelioid), we have set up a simplified model of in vivo growth orthotopically by inoculating tumor cells directly in the thorax with a minimally invasive procedure. Mesothelioma tumors grew along the pleura and spread on the superficial areas of the lungs, but no masses were found outside the thoracic cavity. As observed in human MPM, tumors were highly infiltrated by macrophages and T cells. The luciferase-expressing cells can be visualized in vivo by bioluminescent optical imaging to precisely quantify tumor growth over time. Notably, the bioluminescence signal detected in vivo correctly matched the tumor burden quantified with classical histology. In contrast, the subcutaneous or intraperitoneal growth of these mesothelioma cells was considered either non-representative of the human disease or unreliable to precisely quantify tumor load. Our non-invasive in vivo model of mesothelioma is simple and reproducible, and it reliably recapitulates the human disease.
RESUMEN
Extracellular nicotinamide phosphoribosyltransferase (eNAMPT) is increased in inflammatory bowel disease (IBD) patients, and its serum levels correlate with a worse prognosis. In the present manuscript, we show that eNAMPT serum levels are increased in IBD patients that fail to respond to anti-TNFα therapy (infliximab or adalimumab) and that its levels drop in patients that are responsive to these therapies, with values comparable with healthy subjects. Furthermore, eNAMPT administration in dinitrobenzene sulfonic acid (DNBS)-treated mice exacerbates the symptoms of colitis, suggesting a causative role of this protein in IBD. To determine the druggability of this cytokine, we developed a novel monoclonal antibody (C269) that neutralizes in vitro the cytokine-like action of eNAMPT and that reduces its serum levels in rodents. Of note, this newly generated antibody is able to significantly reduce acute and chronic colitis in both DNBS- and dextran sulfate sodium (DSS)-induced colitis. Importantly, C269 ameliorates the symptoms by reducing pro-inflammatory cytokines. Specifically, in the lamina propria, a reduced number of inflammatory monocytes, neutrophils, Th1, and cytotoxic T lymphocytes are found upon C269 treatment. Our data demonstrate that eNAMPT participates in IBD and, more importantly, that eNAMPT-neutralizing antibodies are endowed with a therapeutic potential in IBD. KEY MESSAGES: What are the new findings? Higher serum eNAMPT levels in IBD patients might decrease response to anti-TNF therapy. The cytokine-like activity of eNAMPT may be neutralized with a monoclonal antibody. Neutralization of eNAMPT ameliorates acute and chronic experimental colitis. Neutralization of eNAMPT limits the expression of IBD inflammatory signature. Neutralization of eNAMPT impairs immune cell infiltration in lamina propria.
Asunto(s)
Anticuerpos Monoclonales/farmacología , Anticuerpos Neutralizantes/farmacología , Colitis/etiología , Citocinas/antagonistas & inhibidores , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Animales , Biomarcadores , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colitis/patología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Espacio Extracelular/metabolismo , Mediadores de Inflamación/metabolismo , Enfermedades Inflamatorias del Intestino/etiología , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Ratones , Membrana Mucosa/inmunología , Membrana Mucosa/metabolismoRESUMEN
Kirsten rat sarcoma viral oncogene homolog KRAS proto-oncogene is the most common altered gene in colorectal cancer (CRC). Determining its mutational status, which is associated with worse prognosis and resistance to anti-epidermal growth factor receptor (EGFR) inhibitors, is essential for managing patients with CRC and colon liver metastases (CLM). Emerging studies highlighted the relationship of KRAS-mutated cancers and tumor microenvironment components, mainly with T cells. The aim of this study was to analyze the relationship of CLM immune cell infiltrate with KRAS mutational status. We performed a retrospective study on paraffin-embedded CLM tissue sections from patients surgically resected at the Department of Hepatobiliary and General Surgery of Humanitas Clinical and Cancer Center. We studied the distribution of lymphocytes (CD3+ cells), macrophages (CD163+), and neutrophils (CD66b+) in CLM tumoral and peritumoral area. Percentage of positive cells was correlated with tumor macroscopic characteristic, clinical aspects, and KRAS mutation. We observed a significant increase in CD66b+ cells in the peritumoral area in patients KRAS-mutated compared to KRAS wild-type patients. Percentages of lymphocytes and macrophages did not show significant differences. Further, neutrophils were found to be significantly increased also in the bloodstream of KRAS-mutated patients, indicating increased mobilization of neutrophils and recruitment in the CLM site. In conclusion, this study reveals a new intriguing aspect of the peritumoral microenvironment, which could pave the way for new prognostic and predictive markers for patient stratification.
Asunto(s)
Biomarcadores de Tumor , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/secundario , Mutación , Proteínas Proto-Oncogénicas p21(ras)/genética , Adulto , Anciano , Biomarcadores , Femenino , Humanos , Inmunohistoquímica , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/patología , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Pronóstico , Proto-Oncogenes Mas , Microambiente Tumoral/genética , Microambiente Tumoral/inmunologíaRESUMEN
BACKGROUND: Inflammation is a key component of cardiac disease, with macrophages and T lymphocytes mediating essential roles in the progression to heart failure. Nonetheless, little insight exists on other immune subsets involved in the cardiotoxic response. METHODS: Here, we used single-cell RNA sequencing to map the cardiac immune composition in the standard murine nonischemic, pressure-overload heart failure model. By focusing our analysis on CD45+ cells, we obtained a higher resolution identification of the immune cell subsets in the heart, at early and late stages of disease and in controls. We then integrated our findings using multiparameter flow cytometry, immunohistochemistry, and tissue clarification immunofluorescence in mouse and human. RESULTS: We found that most major immune cell subpopulations, including macrophages, B cells, T cells and regulatory T cells, dendritic cells, Natural Killer cells, neutrophils, and mast cells are present in both healthy and diseased hearts. Most cell subsets are found within the myocardium, whereas mast cells are found also in the epicardium. Upon induction of pressure overload, immune activation occurs across the entire range of immune cell types. Activation led to upregulation of key subset-specific molecules, such as oncostatin M in proinflammatory macrophages and PD-1 in regulatory T cells, that may help explain clinical findings such as the refractivity of patients with heart failure to anti-tumor necrosis factor therapy and cardiac toxicity during anti-PD-1 cancer immunotherapy, respectively. CONCLUSIONS: Despite the absence of infectious agents or an autoimmune trigger, induction of disease leads to immune activation that involves far more cell types than previously thought, including neutrophils, B cells, Natural Killer cells, and mast cells. This opens up the field of cardioimmunology to further investigation by using toolkits that have already been developed to study the aforementioned immune subsets. The subset-specific molecules that mediate their activation may thus become useful targets for the diagnostics or therapy of heart failure.
Asunto(s)
Insuficiencia Cardíaca/inmunología , Inmunidad Celular/fisiología , Miocardio/inmunología , Análisis de la Célula Individual/métodos , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Citometría de Flujo/métodos , Insuficiencia Cardíaca/sangre , Insuficiencia Cardíaca/patología , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Ratones , Ratones Endogámicos C57BL , Miocardio/metabolismo , Miocardio/patología , Neutrófilos/inmunología , Neutrófilos/metabolismo , Análisis de Secuencia de ARN/métodosRESUMEN
MiR-133a is a muscle-enriched miRNA, which plays a key role for proper skeletal and cardiac muscle function via regulation of transduction cascades, including the Wnt signalling. MiR-133a modulates its targets via canonical mRNA repression, a process that has been largely demonstrated to occur within the cytoplasm. However, recent evidence has shown that miRNAs play additional roles in other sub-cellular compartments, such as nuclei. Here, we show that miR-133a translocates to the nucleus of cardiac cells following inactivation of the canonical Wnt pathway. The nuclear miR-133a/AGO2 complex binds to a complementary miR-133a target site within the promoter of the de novo DNA methyltransferase 3B (Dnmt3b) gene, leading to its transcriptional repression, which is mediated by DNMT3B itself. Altogether, these data show an unconventional role of miR-133a that upon its relocalization to the nucleus is responsible for epigenetic repression of its target gene Dnmt3b via a DNMT3B self-regulatory negative feedback loop.