Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Signal ; 17(821): eadg2622, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38289985

RESUMEN

Targeted degradation regulates the activity of the transcriptional repressor Bcl6 and its ability to suppress oxidative stress and inflammation. Here, we report that abundance of endothelial Bcl6 is determined by its interaction with Golgi-localized pannexin 3 (Panx3) and that Bcl6 transcriptional activity protects against vascular oxidative stress. Consistent with data from obese, hypertensive humans, mice with an endothelial cell-specific deficiency in Panx3 had spontaneous systemic hypertension without obvious changes in channel function, as assessed by Ca2+ handling, ATP amounts, or Golgi luminal pH. Panx3 bound to Bcl6, and its absence reduced Bcl6 protein abundance, suggesting that the interaction with Panx3 stabilized Bcl6 by preventing its degradation. Panx3 deficiency was associated with increased expression of the gene encoding the H2O2-producing enzyme Nox4, which is normally repressed by Bcl6, resulting in H2O2-induced oxidative damage in the vasculature. Catalase rescued impaired vasodilation in mice lacking endothelial Panx3. Administration of a newly developed peptide to inhibit the Panx3-Bcl6 interaction recapitulated the increase in Nox4 expression and in blood pressure seen in mice with endothelial Panx3 deficiency. Panx3-Bcl6-Nox4 dysregulation occurred in obesity-related hypertension, but not when hypertension was induced in the absence of obesity. Our findings provide insight into a channel-independent role of Panx3 wherein its interaction with Bcl6 determines vascular oxidative state, particularly under the adverse conditions of obesity.


Asunto(s)
Hipertensión , Factores de Transcripción , Animales , Humanos , Ratones , Diferenciación Celular , Proliferación Celular/fisiología , Conexinas/metabolismo , Peróxido de Hidrógeno/farmacología , Obesidad , Estrés Oxidativo , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Factores de Transcripción/metabolismo
2.
Curr Opin Struct Biol ; 82: 102654, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37542910

RESUMEN

Compared to soluble protein counterparts, the understanding of membrane protein stability, solvent interactions, and function are not as well understood. Recent advancements in labeling, expression, and stabilization of membrane proteins have enabled solution nuclear magnetic resonance spectroscopy to investigate membrane protein conformational states, ligand binding, lipid interactions, stability, and folding. This review highlights these advancements and new understandings and provides examples of recent applications.


Asunto(s)
Proteínas de la Membrana , Proteínas de la Membrana/química , Resonancia Magnética Nuclear Biomolecular/métodos , Espectroscopía de Resonancia Magnética/métodos , Conformación Proteica
3.
Nat Commun ; 14(1): 5151, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37620344

RESUMEN

Peptidoglycan (PG) is an essential structural component of the bacterial cell wall that is synthetized during cell division and elongation. PG forms an extracellular polymer crucial for cellular viability, the synthesis of which is the target of many antibiotics. PG assembly requires a glycosyltransferase (GT) to generate a glycan polymer using a Lipid II substrate, which is then crosslinked to the existing PG via a transpeptidase (TP) reaction. A Shape, Elongation, Division and Sporulation (SEDS) GT enzyme and a Class B Penicillin Binding Protein (PBP) form the core of the multi-protein complex required for PG assembly. Here we used single particle cryo-electron microscopy to determine the structure of a cell elongation-specific E. coli RodA-PBP2 complex. We combine this information with biochemical, genetic, spectroscopic, and computational analyses to identify the Lipid II binding sites and propose a mechanism for Lipid II polymerization. Our data suggest a hypothesis for the movement of the glycan strand from the Lipid II polymerization site of RodA towards the TP site of PBP2, functionally linking these two central enzymatic activities required for cell wall peptidoglycan biosynthesis.


Asunto(s)
Escherichia coli , Peptidil Transferasas , Microscopía por Crioelectrón , Escherichia coli/genética , Peptidoglicano , Biología Molecular , Antibacterianos , Glicosiltransferasas
4.
PLoS Pathog ; 19(3): e1011055, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36862761

RESUMEN

Neisseria gonorrhoeae (Gc) is a human-specific pathogen that causes the sexually transmitted infection gonorrhea. Gc survives in neutrophil-rich gonorrheal secretions, and recovered bacteria predominantly express phase-variable, surface-expressed opacity-associated (Opa) proteins (Opa+). However, expression of Opa proteins like OpaD decreases Gc survival when exposed to human neutrophils ex vivo. Here, we made the unexpected observation that incubation with normal human serum, which is found in inflamed mucosal secretions, enhances survival of Opa+ Gc from primary human neutrophils. We directly linked this phenomenon to a novel complement-independent function for C4b-binding protein (C4BP). When bound to the bacteria, C4BP was necessary and sufficient to suppress Gc-induced neutrophil reactive oxygen species production and prevent neutrophil phagocytosis of Opa+ Gc. This research identifies for the first time a complement-independent role for C4BP in enhancing the survival of a pathogenic bacterium from phagocytes, thereby revealing how Gc exploits inflammatory conditions to persist at human mucosal surfaces.


Asunto(s)
Gonorrea , Neisseria gonorrhoeae , Humanos , Neisseria gonorrhoeae/metabolismo , Neutrófilos/microbiología , Proteína de Unión al Complemento C4b/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Gonorrea/microbiología
5.
Proc Natl Acad Sci U S A ; 119(43): e2202992119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36251991

RESUMEN

N-glycosylation is a common posttranslational modification of secreted proteins in eukaryotes. This modification targets asparagine residues within the consensus sequence, N-X-S/T. While this sequence is required for glycosylation, the initial transfer of a high-mannose glycan by oligosaccharyl transferases A or B (OST-A or OST-B) can lead to incomplete occupancy at a given site. Factors that determine the extent of transfer are not well understood, and understanding them may provide insight into the function of these important enzymes. Here, we use mass spectrometry (MS) to simultaneously measure relative occupancies for three N-glycosylation sites on the N-terminal IgV domain of the recombinant glycoprotein, hCEACAM1. We demonstrate that addition is primarily by the OST-B enzyme and propose a kinetic model of OST-B N-glycosylation. Fitting the kinetic model to the MS data yields distinct rates for glycan addition at most sites and suggests a largely stochastic initial order of glycan addition. The model also suggests that glycosylation at one site influences the efficiency of subsequent modifications at the other sites, and glycosylation at the central or N-terminal site leads to dead-end products that seldom lead to full glycosylation of all three sites. Only one path of progressive glycosylation, one initiated by glycosylation at the C-terminal site, can efficiently lead to full occupancy for all three sites. Thus, the hCEACAM1 domain provides an effective model system to study site-specific recognition of glycosylation sequons by OST-B and suggests that the order and efficiency of posttranslational glycosylation is influenced by steric cross-talk between adjoining acceptor sites.


Asunto(s)
Asparagina , Hexosiltransferasas , Asparagina/metabolismo , Glicoproteínas/metabolismo , Glicosilación , Hexosiltransferasas/genética , Hexosiltransferasas/metabolismo , Manosa , Polisacáridos , Transferasas/metabolismo
6.
Nat Commun ; 13(1): 6405, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36302779

RESUMEN

Resistance artery vasodilation in response to hypoxia is essential for matching tissue oxygen and demand. In hypoxia, erythrocytic hemoglobin tetramers produce nitric oxide through nitrite reduction. We hypothesized that the alpha subunit of hemoglobin expressed in endothelium also facilitates nitrite reduction proximal to smooth muscle. Here, we create two mouse strains to test this: an endothelial-specific alpha globin knockout (EC Hba1Δ/Δ) and another with an alpha globin allele mutated to prevent alpha globin's inhibitory interaction with endothelial nitric oxide synthase (Hba1WT/Δ36-39). The EC Hba1Δ/Δ mice had significantly decreased exercise capacity and intracellular nitrite consumption in hypoxic conditions, an effect absent in Hba1WT/Δ36-39 mice. Hypoxia-induced vasodilation is significantly decreased in arteries from EC Hba1Δ/Δ, but not Hba1WT/Δ36-39 mice. Hypoxia also does not lower blood pressure in EC Hba1Δ/Δ mice. We conclude the presence of alpha globin in resistance artery endothelium acts as a nitrite reductase providing local nitric oxide in response to hypoxia.


Asunto(s)
Óxido Nítrico , Nitrito Reductasas , Ratones , Animales , Nitrito Reductasas/genética , Nitrito Reductasas/farmacología , Óxido Nítrico/farmacología , Nitritos , Globinas alfa/genética , Hipoxia , Endotelio Vascular , Hemoglobinas/genética , Vasodilatación/fisiología
7.
Biophys J ; 121(11): 2078-2083, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35505611

RESUMEN

Lipoprotein signal peptidase (LspA) is an aspartyl protease that cleaves the transmembrane helix signal peptide of lipoproteins as part of the lipoprotein-processing pathway. Members of this pathway are excellent targets for the development of antibiotic therapeutics because they are essential in Gram-negative bacteria, are important for virulence in Gram-positive bacteria, and may not develop antibiotic resistance. Here, we report the conformational dynamics of LspA in the apo state and bound to the antibiotic globomycin determined using molecular dynamics simulations and electron paramagnetic resonance. The periplasmic helix fluctuates on the nanosecond timescale and samples unique conformations in the different states. In the apo state, the dominant conformation is the most closed and occludes the charged active site from the lipid bilayer. With antibiotic bound there are multiple binding modes with the dominant conformation of the periplasmic helix in a more open conformation. The different conformations observed in both bound and apo states indicate a flexible and adaptable active site, which explains how LspA accommodates and processes such a variety of substrates.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Antibacterianos/química , Ácido Aspártico Endopeptidasas/metabolismo , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Lipoproteínas , Simulación de Dinámica Molecular , Conformación Proteica
8.
J Bacteriol ; 204(4): e0003522, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35343795

RESUMEN

Neisseria gonorrhoeae infection is characterized by local and abundant recruitment of neutrophils. Despite neutrophils' antimicrobial activities, viable N. gonorrhoeae is recovered from infected individuals, leading to the question of how N. gonorrhoeae survives neutrophil attack. One feature impacting N. gonorrhoeae-neutrophil interactions is the phase-variable opacity-associated (Opa) proteins. Most Opa proteins engage human carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) to facilitate bacterial binding and invasion. Neutrophils express two transmembrane CEACAMs, CEACAM1 and the granulocyte-specific CEACAM3. While N. gonorrhoeae isolated from infected individuals is frequently Opa+, expression of OpaD from strain FA1090, which interacts with CEACAMs 1 and 3, is associated with reduced N. gonorrhoeae survival after exposure to human neutrophils. In this study, we hypothesized that the receptor-binding capability of individual Opa proteins impacts bacterial survival in the presence of neutrophils. To test this hypothesis, we introduced opa genes that are constitutively expressed into a derivative of strain FA1090 with all 11 opa genes deleted. The engineered genes encode Opa proteins that bind CEACAM1 and -3, CEACAM1 but not CEACAM3, or neither CEACAM1 nor -3. N. gonorrhoeae expressing CEACAM3-binding Opa proteins survived significantly less well than bacteria expressing other Opa proteins when exposed to primary human neutrophils. The CEACAM3-binding N. gonorrhoeae had significantly greater association with and internalization by neutrophils. However, once internalized, bacteria were similarly killed inside neutrophils, regardless of Opa expression. Furthermore, Opa expression did not significantly impact neutrophil granule mobilization. Our findings indicate that the extent to which Opa proteins mediate nonopsonic binding is the predominant determinant of bacterial survival from neutrophils. IMPORTANCE Neisseria gonorrhoeae, the cause of gonorrhea, is an urgent-threat pathogen due to increasing numbers of infections and increased antibiotic resistance. Many surface components of N. gonorrhoeae are phase variable, including the Opa protein family of adhesins and invasins. While Opa protein expression is selected for in vivo, bacteria expressing some Opa proteins are readily killed by neutrophils, which are recruited to sites of infection. The reason for this discrepancy has remained unresolved. Our work shows that Opa-dependent differences in bacterial survival after exposure to primary human neutrophils correlates with Opa-dependent bacterial binding and phagocytosis. These findings underscore how the ability of N. gonorrhoeae to change Opa expression through phase variation contributes to bacterial resistance to neutrophil clearance.


Asunto(s)
Gonorrea , Neisseria gonorrhoeae , Antígenos Bacterianos/metabolismo , Adhesión Bacteriana , Proteínas de la Membrana Bacteriana Externa/metabolismo , Antígeno Carcinoembrionario/genética , Antígeno Carcinoembrionario/metabolismo , Gonorrea/microbiología , Humanos , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/metabolismo , Neutrófilos/microbiología , Fagocitosis
9.
Structure ; 30(5): 658-670.e5, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35219398

RESUMEN

Carcinoembryonic cellular adhesion molecules (CEACAMs) serve diverse roles in cell signaling, proliferation, and survival and are made up of one or several immunoglobulin (Ig)-like ectodomains glycosylated in vivo. The physiological oligomeric state and how it contributes to protein function are central to understanding CEACAMs. Two putative dimer conformations involving different CEACAM1 N-terminal Ig-like domain (CCM1) protein faces (ABED and GFCC'C″) were identified from crystal structures. GFCC'C″ was identified as the dominant CCM1 solution dimer, but ambiguity regarding the effect of glycosylation on dimer formation calls its physiological relevance into question. We present the first crystal structure of minimally glycosylated CCM1 in the GFCC'C″ dimer conformation and characterization in solution by continuous-wave and double electron-electron resonance electron paramagnetic resonance spectroscopy. Our results suggest the GFCC'C″ dimer is dominant in solution with different levels of glycosylation, and structural conservation and co-evolved residues support that the GFCC'C″ dimer is conserved across CEACAMs.


Asunto(s)
Antígenos CD , Moléculas de Adhesión Celular , Antígenos CD/química , Moléculas de Adhesión Celular/metabolismo , Dimerización , Humanos , Polisacáridos
10.
Physiol Rev ; 102(2): 859-892, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34486392

RESUMEN

Globin proteins exist in every cell type of the vasculature, from erythrocytes to endothelial cells, vascular smooth muscle cells, and peripheral nerve cells. Many globin subtypes are also expressed in muscle tissues (including cardiac and skeletal muscle), in other organ-specific cell types, and in cells of the central nervous system (CNS). The ability of each of these globins to interact with molecular oxygen (O2) and nitric oxide (NO) is preserved across these contexts. Endothelial α-globin is an example of extraerythrocytic globin expression. Other globins, including myoglobin, cytoglobin, and neuroglobin, are observed in other vascular tissues. Myoglobin is observed primarily in skeletal muscle and smooth muscle cells surrounding the aorta or other large arteries. Cytoglobin is found in vascular smooth muscle but can also be expressed in nonvascular cell types, especially in oxidative stress conditions after ischemic insult. Neuroglobin was first observed in neuronal cells, and its expression appears to be restricted mainly to the CNS and the peripheral nervous system. Brain and CNS neurons expressing neuroglobin are positioned close to many arteries within the brain parenchyma and can control smooth muscle contraction and thus tissue perfusion and vascular reactivity. Overall, reactions between NO and globin heme iron contribute to vascular homeostasis by regulating vasodilatory NO signals and scavenging reactive species in cells of the mammalian vascular system. Here, we discuss how globin proteins affect vascular physiology, with a focus on NO biology, and offer perspectives for future study of these functions.


Asunto(s)
Fenómenos Fisiológicos Cardiovasculares , Citoglobina/metabolismo , Células Endoteliales/metabolismo , Globinas/metabolismo , Animales , Humanos , Mioglobina/metabolismo , Neuroglobina/metabolismo
11.
Biochim Biophys Acta Proteins Proteom ; 1869(4): 140602, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33422670

RESUMEN

Phosphoglucose isomerases (PGIs) belong to a class of enzymes that catalyze the reversible isomerization of glucose-6-phosphate to fructose-6-phosphate. PGIs are crucial in glycolysis and gluconeogenesis pathways and proposed as serving additional extracellular functions in eukaryotic organisms. The phosphoglucose isomerase function of TM1385, a previously uncharacterized protein from Thermotoga maritima, was hypothesized based on structural similarity to established PGI crystal structures and computational docking. Kinetic and colorimetric assays combined with 1H nuclear magnetic resonance (NMR) spectroscopy experimentally confirm that TM1385 is a phosphoglucose isomerase (TmPGI). Evidence of solvent exchange in 1H NMR spectra supports that TmPGI isomerization proceeds through a cis-enediol-based mechanism. To determine which amino acid residues are critical for TmPGI catalysis, putative active site residues were mutated with alanine and screened for activity. Results support that E281 is most important for TmPGI formation of the cis-enediol intermediate, and the presence of either H310 or K422 may be required for catalysis, similar to previous observations from homologous PGIs. However, only TmPGI E281A/Q415A and H310A/K422A double mutations abolished activity, suggesting that there are redundant catalytic residues, and Q415 may participate in sugar phosphate isomerization upon E281 mutation. Combined, we propose that TmPGI E281 participates directly in the cis-enediol intermediate step, and either H310 or K422 may facilitate sugar ring opening and closure.


Asunto(s)
Proteínas Bacterianas/metabolismo , Glucosa-6-Fosfato Isomerasa/metabolismo , Thermotoga maritima/metabolismo , Proteínas Bacterianas/química , Catálisis , Dominio Catalítico , Glucosa-6-Fosfato Isomerasa/química , Isomerismo , Cinética , Espectroscopía de Protones por Resonancia Magnética , Especificidad por Sustrato
12.
Cytometry A ; 97(10): 1081-1089, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32484607

RESUMEN

Human carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) are a family of receptors that mediate intercellular interactions. Pathogenic bacteria have ligands that bind CEACAMs on human cells. Neisseria gonorrhoeae (Gc) encodes numerous unique outer membrane opacity-associated (Opa) proteins that are ligands for one or more CEACAMs. CEACAMs that are expressed on epithelial cells facilitate Gc colonization, while those expressed on neutrophils affect phagocytosis and consequent intracellular survival of Gc. Since Opa protein expression is phase-variable, variations in receptor tropism affect how individual bacteria within a population interact with host cells. Here we report the development of a rapid, quantitative method for collecting and analyzing fluorescence intensity data from thousands of cells in a population using imaging flow cytometry to detect N-CEACAM bound to the surface of Opa-expressing Gc. We use this method to confirm previous findings regarding Opa-CEACAM interactions and to examine the receptor-ligand interactions of Gc expressing other Opa proteins, as well as for other N-CEACAM proteins. © 2020 International Society for Advancement of Cytometry.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa , Neisseria gonorrhoeae , Antígenos Bacterianos , Moléculas de Adhesión Celular , Citometría de Flujo , Humanos , Neutrófilos
14.
Biophys J ; 116(9): 1682-1691, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31023535

RESUMEN

The dynamics of phosphocholine and maltoside micelles, detergents frequently used for membrane protein structure determination, were investigated using electron paramagnetic resonance of spin probes doped into the micelles. Specifically, phosphocholines are frequently used detergents in NMR studies, and maltosides are frequently used in x-ray crystallography structure determination. Beyond the structural and electrostatic differences, this study aimed to determine whether there are differences in the local chain dynamics (i.e., fluidity). The nitroxide probe rotational dynamics in longer chain detergents is more restricted than in shorter chain detergents, and maltoside micelles are more restricted than phosphocholine micelles. Furthermore, the micelle microviscosity can be modulated with mixtures, as demonstrated with mixtures of 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate with n-dodecylphosphocholine, n-tetradecylphosphocholine, n-decyl-ß-D-maltoside, or n-dodecyl-ß-D-maltoside. These results indicate that observed differences in membrane protein stability in these detergents could be due to fluidity in addition to the already determined structural differences.


Asunto(s)
Ácidos Cólicos/química , Maltosa/química , Fluidez de la Membrana , Micelas , Fosforilcolina/química , Oxígeno/química
15.
Mol Pharm ; 16(6): 2354-2363, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-30995063

RESUMEN

Carcinoembryonic antigen-like cell adhesion molecules (CEACAMs) are human cell-surface proteins that can exhibit increased expression on tumor cells and are thus a potential target for novel tumor-seeking therapeutic delivery methods. We hypothesize that engineered nanoparticles containing a known interaction partner of CEACAM, Neisseria gonorrhoeae outer membrane protein Opa, can be used to deliver cargo to specific cellular targets. In this study, the cell association and uptake of protein-free liposomes and Opa proteoliposomes into CEACAM-expressing cells were measured using imaging flow cytometry. A size-dependent internalization of liposomes into HeLa cells was observed through endocytic pathways. Opa-dependent, CEACAM1-mediated uptake of liposomes into HeLa cells was observed, with limited colocalization with endosomal and lysosomal trafficking compartments. Given the overexpression of CEACAM1 on several distinct cancers and interest in using CEACAM1 as a component in treatment strategies, these results support further pursuit of investigating Opa-dependent specificity and the internalization mechanism for therapeutic delivery.


Asunto(s)
Antígenos CD/química , Moléculas de Adhesión Celular/química , Liposomas/metabolismo , Nanopartículas/química , Proteolípidos/química , Citometría de Flujo , Células HeLa , Humanos , Liposomas/química
16.
Circ Res ; 124(10): 1473-1481, 2019 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-30900949

RESUMEN

RATIONALE: Resistance arteries and conduit arteries rely on different relative contributions of endothelial-derived hyperpolarization versus nitric oxide to achieve dilatory heterocellular signaling. Anatomically, resistance arteries use myoendothelial junctions (MEJs), endothelial cell projections that make contact with smooth muscle cells. Conduit arteries have very few to no MEJs. OBJECTIVE: Determine if the presence of MEJs in conduit arteries can alter heterocellular signaling. METHODS AND RESULTS: We previously demonstrated that PAI-1 (plasminogen activator inhibitor-1) can regulate formation of MEJs. Thus, we applied pluronic gel containing PAI-1 directly to conduit arteries (carotid arteries) to determine if this could induce formation of MEJs. We found a significant increase in endothelial cell projections resembling MEJs that correlated with increased biocytin dye transfer from endothelial cells to smooth muscle cells. Next, we used pressure myography to investigate whether these structural changes were accompanied by a functional change in vasodilatory signaling. Interestingly, PAI-1-treated carotids underwent a switch from a conduit to resistance artery vasodilatory profile via diminished nitric oxide signaling and increased endothelial-derived hyperpolarization signaling in response to the endothelium-dependent agonists acetylcholine and NS309. After PAI-1 application, we also found a significant increase in carotid expression of endothelial alpha globin, a protein predominantly expressed in resistance arteries. Carotids from mice with PAI-1, but lacking alpha globin (Hba1-/-), demonstrated that l-nitro-arginine methyl ester, an inhibitor of nitric oxide signaling, was able to prevent arterial relaxation. CONCLUSIONS: The presence or absence of MEJs is an important determinant for influencing heterocellular communication in the arterial wall. In particular, alpha globin expression, induced within newly formed endothelial cell projections, may influence the balance between endothelial-derived hyperpolarization and nitric oxide-mediated vasodilation.


Asunto(s)
Arterias Carótidas/efectos de los fármacos , Comunicación Celular/fisiología , Células Endoteliales/efectos de los fármacos , Uniones Intercelulares/fisiología , Músculo Liso Vascular/citología , Vasodilatación/fisiología , Acetilcolina/farmacología , Animales , Arterias Carótidas/fisiología , Comunicación Celular/efectos de los fármacos , Células Endoteliales/fisiología , Endotelio Vascular/fisiología , Inhibidores Enzimáticos/farmacología , Indoles/farmacología , Uniones Intercelulares/efectos de los fármacos , Uniones Intercelulares/metabolismo , Masculino , Ratones , Miografía/métodos , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/metabolismo , Oximas/farmacología , Inhibidor 1 de Activador Plasminogénico/farmacología , Inhibidores de Serina Proteinasa/farmacología , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología , Globinas alfa/metabolismo
17.
Angew Chem Int Ed Engl ; 57(52): 17110-17114, 2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30395378

RESUMEN

Highly flexible proteins present a special challenge for structure determination because they are multi-structured yet not disordered, so their conformational ensembles are essential for understanding function. Because spectroscopic measurements of multiple conformational populations often provide sparse data, experiment selection is a limiting factor in conformational refinement. A molecular simulations- and information-theory based approach to select which experiments best refine conformational ensembles has been developed. This approach was tested on three flexible proteins. For proteins where a clear mechanistic hypothesis exists, experiments that test this hypothesis were systematically identified. When available data did not yield such mechanistic hypotheses, experiments that significantly outperform structure-guided approaches in conformational refinement were identified. This approach offers a particular advantage when refining challenging, underdetermined protein conformational ensembles.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas/química , Conformación Proteica
18.
J Phys Chem Lett ; 9(15): 4469-4473, 2018 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-30024762

RESUMEN

Bicelles are used in many membrane protein studies because they are thought to be more bilayer-like than micelles. We investigated the properties of "isotropic" bicelles by small-angle neutron scattering, small-angle X-ray scattering, fluorescence anisotropy, and molecular dynamics. All data suggest that bicelles with a q value below 1 deviate from the classic bicelle that contains lipids in the core and detergent in the rim. Thus not all isotropic bicelles are bilayer-like.

19.
Nat Commun ; 8(1): 1201, 2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-29084938

RESUMEN

Cellular protein homeostasis depends on heat shock proteins 70 kDa (Hsp70s), a class of ubiquitous and highly conserved molecular chaperone. Key to the chaperone activity is an ATP-induced allosteric regulation of polypeptide substrate binding and release. To illuminate the molecular mechanism of this allosteric coupling, here we present a novel crystal structure of an intact human BiP, an essential Hsp70 in ER, in an ATP-bound state. Strikingly, the polypeptide-binding pocket is completely closed, seemingly excluding any substrate binding. Our FRET, biochemical and EPR analysis suggests that this fully closed conformation is the major conformation for the ATP-bound state in solution, providing evidence for an active release of bound polypeptide substrates following ATP binding. The Hsp40 co-chaperone converts this fully closed conformation to an open conformation to initiate productive substrate binding. Taken together, this study provided a mechanistic understanding of the dynamic nature of the polypeptide-binding pocket in the Hsp70 chaperone cycle.


Asunto(s)
Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/metabolismo , Péptidos/metabolismo , Adenosina Trifosfato , Sitios de Unión , Secuencia Conservada , Cristalografía por Rayos X , Chaperón BiP del Retículo Endoplásmico , Glicina/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Humanos , Modelos Biológicos , Modelos Moleculares , Conformación Proteica , Especificidad por Sustrato
20.
Hypertension ; 68(6): 1494-1503, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27802421

RESUMEN

The ability of hemoglobin to scavenge the potent vasodilator nitric oxide (NO) in the blood has been well established as a mechanism of vascular tone homeostasis. In endothelial cells, the alpha chain of hemoglobin (hereafter, alpha globin) and endothelial NO synthase form a macromolecular complex, providing a sink for NO directly adjacent to the production source. We have developed an alpha globin mimetic peptide (named HbαX) that displaces endogenous alpha globin and increases bioavailable NO for vasodilation. Here we show that, in vivo, HbαX administration increases capillary oxygenation and blood flow in arterioles acutely and produces a sustained decrease in systolic blood pressure in normal and angiotensin II-induced hypertensive states. HbαX acts with high specificity and affinity to endothelial NO synthase, without toxicity to liver and kidney and no effect on p50 of O2 binding in red blood cells. In human vasculature, HbαX blunts vasoconstrictive response to cumulative doses of phenylephrine, a potent constricting agent. By binding to endothelial NO synthase and displacing endogenous alpha globin, HbαX modulates important metrics of vascular function, increasing vasodilation and flow in the resistance vasculature.


Asunto(s)
Hipertensión/fisiopatología , Óxido Nítrico Sintasa/metabolismo , Resistencia Vascular/fisiología , Vasodilatadores/farmacología , Globinas alfa/metabolismo , Angiotensina II/farmacología , Animales , Velocidad del Flujo Sanguíneo/fisiología , Modelos Animales de Enfermedad , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Hemodinámica/efectos de los fármacos , Humanos , Ratones , Distribución Aleatoria , Resistencia Vascular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA