Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 10531, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35732784

RESUMEN

Untangling the factors of morphological evolution has long held a central role in the study of evolutionary biology. Extant speciose clades that have only recently diverged are ideal study subjects, as they allow the examination of rapid morphological variation in a phylogenetic context, providing insights into a clade's evolution. Here, we focus on skull morphological variability in a widely distributed shrew species complex, the Crocidura poensis species complex. The relative effects of taxonomy, size, geography, climate and habitat on skull form were tested, as well as the presence of a phylogenetic signal. Taxonomy was the best predictor of skull size and shape, but surprisingly both size and shape exhibited no significant phylogenetic signal. This paper describes one of the few cases within a mammal clade where morphological evolution does not match the phylogeny. The second strongest predictor for shape variation was size, emphasizing that allometry can represent an easily accessed source of morphological variability within complexes of cryptic species. Taking into account species relatedness, habitat preferences, geographical distribution and differences in skull form, our results lean in favor of a parapatric speciation model within this complex of species, where divergence occurred along an ecological gradient, rather than a geographic barrier.


Asunto(s)
Ecosistema , Musarañas , Animales , Clima , Humanos , Filogenia , Cráneo/anatomía & histología
2.
Mol Phylogenet Evol ; 144: 106703, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31816395

RESUMEN

Wood mice of the genus Hylomyscus, are small-sized rodents widely distributed in lowland and montane rainforests in tropical Africa, where they can be locally abundant. Recent morphological and molecular studies have increased the number of recognized species from 8 to 18 during the last 15 years. We used complete mitochondrial genomes and five nuclear genes to infer the number of candidate species within this genus and depict its evolutionary history. In terms of gene sampling and geographical and taxonomic coverage, this is the most comprehensive review of the genus Hylomyscus to date. The six species groups (aeta, alleni, anselli, baeri, denniae and parvus) defined on morphological grounds are monophyletic. Species delimitation analyses highlight undescribed diversity within this genus: perhaps up to 10 taxa need description or elevation from synonymy, pending review of type specimens. Our divergence dating and biogeographical analyses show that diversification of the genus occurred after the end of the Miocene and is closely linked to the history of the African forest. The formation of the Rift Valley combined with the declining global temperatures during the Late Miocene caused the fragmentation of the forests and explains the first split between the denniae group and remaining lineages. Subsequently, periods of increased climatic instability during Plio-Pleistocene probably resulted in elevated diversification in both lowland and montane forest taxa.


Asunto(s)
Evolución Biológica , Variación Genética , Genoma Mitocondrial , Murinae/clasificación , Murinae/genética , África , Animales , Núcleo Celular/genética , ADN Mitocondrial/genética , Ecosistema , Bosques , Ratones , Filogenia , Análisis de Secuencia de ADN , Clima Tropical
3.
Mol Ecol ; 26(21): 6183, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29144581
4.
Ecol Evol ; 7(19): 7650-7660, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-29043022

RESUMEN

Game species like the red deer have been subjected to anthropogenic impacts for centuries. Translocations are often carried out-sometimes illegally-not only for sporting purposes, but also to increase trophy quality, reduce inbreeding, or mitigate bottlenecks after excessive persecution. Apart from the blurring of large-scale genetic structure, translocations without adequate quarantine measure risk introducing pathogens into potentially immunologically naïve populations. It is therefore important to understand the frequency of clandestine translocations. Identification of non-autochthonous animals and their potential origin is often difficult and, in red deer, has been hampered by the lack of large-scale genotypic datasets for comparison. In the present study, we make use of a recently published European-wide microsatellite dataset to detect and quantify the presence of non-autochthonous red deer in a large population sample (n = 1,780) from Central Europe (Belgium). Using factorial correspondence analysis, assignment tests and Bayesian clustering algorithms we arrive at an estimate of 3.7% non-autochthonous animals (or their descendants). Some of these animals were assigned to a nearby French population and may have immigrated into Belgium naturally, but the large majority must have been introduced by humans. Our analysis pointed to the British Isles and Germany/Poland as the potential origin of many introduced deer, regions known to have been source populations for translocations in Europe and beyond. We found evidence for recreational hunters using carcasses from farmed deer to fulfill mandatory hunting quotas. Our study is the first to quantify the extent of human-mediated introductions in a European game species at such a large scale with large and representative sample sizes.

5.
J Hered ; 107(4): 318-26, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26912909

RESUMEN

We analyzed more than 600 red deer (Cervus elaphus) from large parts of its European distribution range at 13 microsatellite loci, presenting the first continent-wide study of this species using nuclear markers. Populations were clearly differentiated (overall F ST = 0.166, Jost's D est = 0.385), and the BAPS clustering algorithm yielded mainly geographically limited and adjacent genetic units. When forced into only 3 genetic clusters our data set produced a very similar geographic pattern as previously found in mtDNA phylogeographic studies: a western group from Iberia to central and parts of Eastern Europe, an eastern group from the Balkans to Eastern Europe, and a third group including the threatened relict populations from Sardinia and Mesola in Italy. This result was also confirmed by a multivariate approach to analyzing our data set, a discriminant analysis of principal components. Calculations of genetic diversity and effective population sizes (linkage disequilibrium approach) yielded the lowest results for Italian (Sardinia, Mesola; N e between 2 and 8) and Scandinavian red deer, in line with known bottlenecks in these populations. Our study is the first to present comparative nuclear genetic data in red deer across Europe and may serve as a baseline for future analyses of genetic diversity and structuring in this widespread ungulate.


Asunto(s)
Ciervos/clasificación , Ciervos/genética , Variación Genética , Genética de Población , Repeticiones de Microsatélite , Animales , Europa (Continente) , Geografía , Filogenia , Filogeografía , Densidad de Población
6.
BMC Evol Biol ; 15: 71, 2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25900417

RESUMEN

BACKGROUND: This study aims to reconstruct the evolutionary history of African shrews referred to the Crocidura olivieri complex. We tested the respective role of forest retraction/expansion during the Pleistocene, rivers (allopatric models), ecological gradients (parapatric model) and anthropogenic factors in explaining the distribution and diversification within this species complex. We sequenced three mitochondrial and four nuclear markers from 565 specimens encompassing the known distribution of the complex, i.e. from Morocco to Egypt and south to Mozambique. We used Bayesian phylogenetic inference, genetic structure analyses and divergence time estimates to assess the phylogenetic relationships and evolutionary history of these animals. RESULTS: The C. olivieri complex (currently composed of C. olivieri, C. fulvastra, C. viaria and C. goliath) can be segregated into eight principal geographical clades, most exhibiting parapatric distributions. A decrease in genetic diversity was observed between central and western African clades and a marked signal of population expansion was detected for a broadly distributed clade occurring across central and eastern Africa and portions of Egypt (clade IV). The main cladogenesis events occurred within the complex between 1.37 and 0.48 Ma. Crocidura olivieri sensu stricto appears polyphyletic and C. viaria and C. fulvastra were not found to be monophyletic. CONCLUSIONS: Climatic oscillations over the Pleistocene probably played a major role in shaping the genetic diversity within this species complex. Different factors can explain their diversification, including Pleistocene forest refuges, riverine barriers and differentiation along environmental gradients. The earliest postulated members of the complex originated in central/eastern Africa and the first radiations took place in rain forests of the Congo Basin. A dramatic shift in the ecological requirements in early members of the complex, in association with changing environments, took place sometime after 1.13 Ma. Some lineages then colonized a substantial portion of the African continent, including a variety of savannah and forest habitats. The low genetic divergence of certain populations, some in isolated localities, can be explained by their synanthropic habits. This study underlines the need to revise the taxonomy of the C. olivieri complex.


Asunto(s)
Filogeografía , Musarañas/genética , África , Animales , Teorema de Bayes , Evolución Biológica , Ecología , Ecosistema , Bosques , Flujo Genético , Especiación Genética , Variación Genética , Filogenia , Musarañas/clasificación
7.
BMC Evol Biol ; 14: 256, 2014 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-25496476

RESUMEN

BACKGROUND: Rodents of the genus Mus represent one of the most valuable biological models for biomedical and evolutionary research. Out of the four currently recognized subgenera, Nannomys (African pygmy mice, including the smallest rodents in the world) comprises the only original African lineage. Species of this subgenus became important models for the study of sex determination in mammals and they are also hosts of potentially dangerous pathogens. Nannomys ancestors colonized Africa from Asia at the end of Miocene and Eastern Africa should be considered as the place of their first radiation. In sharp contrast with this fact and despite the biological importance of Nannomys, the specimens from Eastern Africa were obviously under-represented in previous studies and the phylogenetic and distributional patterns were thus incomplete. RESULTS: We performed comprehensive genetic analysis of 657 individuals of Nannomys collected at approximately 300 localities across the whole sub-Saharan Africa. Phylogenetic reconstructions based on mitochondrial (CYTB) and nuclear (IRBP) genes identified five species groups and three monotypic ancestral lineages. We provide evidence for important cryptic diversity and we defined and mapped the distribution of 27 molecular operational taxonomic units (MOTUs) that may correspond to presumable species. Biogeographical reconstructions based on data spanning all of Africa modified the previous evolutionary scenarios. First divergences occurred in Eastern African mountains soon after the colonization of the continent and the remnants of these old divergences still occur there, represented by long basal branches of M. (previously Muriculus) imberbis and two undescribed species from Ethiopia and Malawi. The radiation in drier lowland habitats associated with the decrease of body size is much younger, occurred mainly in a single lineage (called the minutoides group, and especially within the species M. minutoides), and was probably linked to aridification and climatic fluctuations in middle Pliocene/Pleistocene. CONCLUSIONS: We discovered very high cryptic diversity in African pygmy mice making the genus Mus one of the richest genera of African mammals. Our taxon sampling allowed reliable phylogenetic and biogeographic reconstructions that (together with detailed distributional data of individual MOTUs) provide a solid basis for further evolutionary, ecological and epidemiological studies of this important group of rodents.


Asunto(s)
Ratones/clasificación , Ratones/genética , Filogenia , África del Sur del Sahara , Animales , Evolución Biológica , Filogeografía
8.
PLoS One ; 7(5): e36586, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22574186

RESUMEN

The Praomyini tribe is one of the most diverse and abundant groups of Old World rodents. Several species are known to be involved in crop damage and in the epidemiology of several human and cattle diseases. Due to the existence of sibling species their identification is often problematic. Thus an easy, fast and accurate species identification tool is needed for non-systematicians to correctly identify Praomyini species. In this study we compare the usefulness of three genes (16S, Cytb, CO1) for identifying species of this tribe. A total of 426 specimens representing 40 species (sampled across their geographical range) were sequenced for the three genes. Nearly all of the species included in our study are monophyletic in the neighbour joining trees. The degree of intra-specific variability tends to be lower than the divergence between species, but no barcoding gap is detected. The success rate of the statistical methods of species identification is excellent (up to 99% or 100% for statistical supervised classification methods as the k-Nearest Neighbour or Random Forest). The 16S gene is 2.5 less variable than the Cytb and CO1 genes. As a result its discriminatory power is smaller. To sum up, our results suggest that using DNA markers for identifying species in the Praomyini tribe is a largely valid approach, and that the CO1 and Cytb genes are better DNA markers than the 16S gene. Our results confirm the usefulness of statistical methods such as the Random Forest and the 1-NN methods to assign a sequence to a species, even when the number of species is relatively large. Based on our NJ trees and the distribution of all intraspecific and interspecific pairwise nucleotide distances, we highlight the presence of several potentially new species within the Praomyini tribe that should be subject to corroboration assessments.


Asunto(s)
Código de Barras del ADN Taxonómico/métodos , Genes Mitocondriales/genética , Muridae/clasificación , Muridae/genética , Animales , Biodiversidad , Citocromos b/genética , Complejo IV de Transporte de Electrones/genética , Análisis de Secuencia de ADN
9.
Mol Phylogenet Evol ; 48(3): 953-63, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18657625

RESUMEN

The crocidurine shrews include the most speciose genus of mammals, Crocidura. The origin and evolution of their radiation is, however, poorly understood because of very scant fossil records and a rather conservative external morphology between species. Here, we use an alignment of 3560 base pairs of mitochondrial and nuclear DNA to generate a phylogenetic hypothesis for the evolution of Old World shrews of the subfamily Crocidurinae. These molecular data confirm the monophyly of the speciose African and Eurasian Crocidura, which also includes the fossorial, monotypic genus Diplomesodon. The phylogenetic reconstructions give further credit to a paraphyletic position of Suncus shrews, which are placed into at least two independent clades (one in Africa and sister to Sylvisorex and one in Eurasia), at the base of the Crocidura radiation. Therefore, we recommend restricting the genus Suncus to the Palaearctic and Oriental taxa, and to consider all the African Suncus as Sylvisorex. Using molecular dating and biogeographic reconstruction analyses, we suggest a Palaearctic-Oriental origin for Crocidura dating back to the Upper Miocene (6.8 million years ago) and several subsequent colonisations of the Afrotropical region by independent lineages of Crocidura.


Asunto(s)
Núcleo Celular/metabolismo , ADN Mitocondrial/genética , Musarañas/genética , África , Animales , Asia , Calibración , Ecología , Europa (Continente) , Evolución Molecular , Geografía , Modelos Genéticos , Filogenia , Análisis de Secuencia de ADN , Musarañas/clasificación , Especificidad de la Especie
10.
Mol Phylogenet Evol ; 30(3): 582-98, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15012940

RESUMEN

The Herpestidae are small terrestrial carnivores comprising 18 African and Asian genera, currently split into two subfamilies, the Herpestinae and the Galidiinae. The aim of this work was to resolve intra-familial relationships and to test the origin of sociality in the group. For this purpose we analysed sequences of the complete cytochrome b gene for 18 species of Herpestidae. The results showed that the mongooses were split into three clades: (1) the Malagasy taxa (Galidiinae and Cryptoprocta), (2) the true social mongooses and (3) the solitary mongooses, each group being also supported by morphological and chromosomal data. Our results suggested unexpected phylogenetic relationships: (1) the genus Cynictis is included in the solitary mongoose clade, (2) the genera Liberiictis and Mungos are sister-group, and (3) the genus Herpestes is polyphyletic. We examined the evolution of the sociality in mongooses by combining behavioural traits with the cytochrome b data. Some of the behavioural traits provided good synapomorphies for characterizing the social species clade, showing the potential benefit of using such characters in phylogeny. The mapping of ecological and behavioural features resulted in hypothesizing solitary behavior and life in forest as the conditions at the base of the mongoose clade.


Asunto(s)
Conducta Animal , Herpestidae/genética , Herpestidae/fisiología , Animales , Citocromos b/genética , Cartilla de ADN/genética , ADN Mitocondrial/genética , Ecología , Evolución Molecular , Filogenia
11.
Mol Phylogenet Evol ; 28(1): 24-37, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12801469

RESUMEN

We analysed the phylogeographic patterns of two congeneric and syntopic species of forest shrews and compared them with biogeographical scenarios proposed for the Central African tropical forest. Our results, based on 82 partial 16s rRNA mitochondrial sequences, suggest that both species must have originated in the Plio-Pleistocene and that their haplotype distributions could reflect the effect of forest fragmentation and expansion associated with paleoclimatic fluctuations during the Pleistocene. However, it seems that the two species responded very differently to environmental changes. While Sylvisorex johnstoni populations exhibit ancient haplotype segregation that may even represent currently unrecognised allopatric species, Sylvisorex ollula haplotypes are much less differentiated and suggest that this taxon has undergone a recent range expansion. The observed differences between these taxa may be explained by their presumably different ecological requirements and colonisation abilities, which in turn may be the result of a significant difference in body size between the two species. In conclusion, our results suggest that it is necessary to incorporate several ecologically well-documented species in studies that attempt to infer evolutionary processes from phylogeographic patterns


Asunto(s)
Filogenia , Musarañas/clasificación , África Central , Animales , Secuencia de Bases , Cartilla de ADN/genética , Ecosistema , Ambiente , Evolución Molecular , Variación Genética , Geografía , Haplotipos , Datos de Secuencia Molecular , Paleontología , ARN Ribosómico 16S/genética , Musarañas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...