Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Prog Neurobiol ; 228: 102491, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37393039

RESUMEN

The interactions between prefrontal cortex and other areas during working memory have been studied for decades. Here we outline a conceptual framework describing interactions between these areas during working memory, and review evidence for key elements of this model. We specifically suggest that a top-down signal sent from prefrontal to sensory areas drives oscillations in these areas. Spike timing within sensory areas becomes locked to these working-memory-driven oscillations, and the phase of spiking conveys information about the representation available within these areas. Downstream areas receiving these phase-locked spikes from sensory areas can recover this information via a combination of coherent oscillations and gating of input efficacy based on the phase of their local oscillations. Although the conceptual framework is based on prefrontal interactions with sensory areas during working memory, we also discuss the broader implications of this framework for flexible communication between brain areas in general.


Asunto(s)
Memoria a Corto Plazo , Corteza Prefrontal , Humanos
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 2254-2257, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36085728

RESUMEN

The formation and recollection of memories is a multi-step neural process subject to errors. We propose a computational model of memory nodes receiving input from a colored tic-tac-toe board. We report memory errors during consolidation and reconsolidation when different noise levels are introduced into the model. The model is based on Hebbian plasticity and attempts to store the color and position of an X or O from the board. Memory nodes simulating neurons use an integrate-and-fire model to represent the correct or incorrect storage of the board information by scaling synaptic weights. We explored how baseline firing rate, which we considered analogous to noise in storing memory, impacted the creation of correct and incorrect memories. We found that a higher firing rate was associated with fewer accurate memories. Interestingly, the ideal amount of noise for correct memory storage was nonzero. This phenomenon is known as stochastic resonance, wherein random noise enhances processing. We also examined how many times our model could reactivate a memory before making an error. We found an exponentially decaying response, with a low firing rate yielding more stable memories. Even though our model incorporates only two memory nodes, it provides a basis for examining the consolidation and retrieval of memory storage based on the unique visual input of a tic-tac-toe board. Further work may incorporate different inputs, more nodes, and increased network complexity. Clinical Relevance- This model enables investigation of how the human cortex may utilize and exploit noise during information processing.


Asunto(s)
Consolidación de la Memoria , Tics , Humanos , Recuerdo Mental , Redes Neurales de la Computación , Vibración
3.
Nat Commun ; 11(1): 3823, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32732934

RESUMEN

An accurate extraction of physiological and physical signals from human skin is crucial for health monitoring, disease prevention, and treatment. Recent advances in wearable bioelectronics directly embedded to the epidermal surface are a promising solution for future epidermal sensing. However, the existing wearable bioelectronics are susceptible to motion artifacts as they lack proper adhesion and conformal interfacing with the skin during motion. Here, we present ultra-conformal, customizable, and deformable drawn-on-skin electronics, which is robust to motion due to strong adhesion and ultra-conformality of the electronic inks drawn directly on skin. Electronic inks, including conductors, semiconductors, and dielectrics, are drawn on-demand in a freeform manner to develop devices, such as transistors, strain sensors, temperature sensors, heaters, skin hydration sensors, and electrophysiological sensors. Electrophysiological signal monitoring during motion shows drawn-on-skin electronics' immunity to motion artifacts. Additionally, electrical stimulation based on drawn-on-skin electronics demonstrates accelerated healing of skin wounds.


Asunto(s)
Monitoreo Fisiológico/instrumentación , Sistemas de Atención de Punto , Piel/fisiopatología , Dispositivos Electrónicos Vestibles , Artefactos , Estimulación Eléctrica , Epidermis/fisiología , Humanos , Movimiento (Física) , Semiconductores , Auxiliares Sensoriales , Piel/lesiones , Cicatrización de Heridas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...