Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Emerg Infect Dis ; 19(6): 886-91, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23731788

RESUMEN

During outbreaks of infectious diseases or in cases of severely ill patients, it is imperative to identify the causative agent. This report describes several events in which virus isolation and identification by electron microscopy were critical to initial recognition of the etiologic agent, which was further analyzed by additional laboratory diagnostic assays. Examples include severe acute respiratory syndrome coronavirus, and Nipah, lymphocytic choriomeningitis, West Nile, Cache Valley, and Heartland viruses. These cases illustrate the importance of the techniques of cell culture and electron microscopy in pathogen identification and recognition of emerging diseases.


Asunto(s)
Virosis/diagnóstico , Virus/aislamiento & purificación , Virus/ultraestructura , Arenaviridae/aislamiento & purificación , Arenaviridae/ultraestructura , Bunyaviridae/aislamiento & purificación , Bunyaviridae/ultraestructura , Técnicas de Cultivo de Célula , Coronaviridae/aislamiento & purificación , Coronaviridae/ultraestructura , Flaviviridae/aislamiento & purificación , Flaviviridae/ultraestructura , Humanos , Microscopía Electrónica , Paramyxoviridae/aislamiento & purificación , Paramyxoviridae/ultraestructura , Estados Unidos/epidemiología , Virosis/epidemiología , Virosis/virología
2.
PLoS Pathog ; 8(10): e1002877, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23055920

RESUMEN

Marburg virus (family Filoviridae) causes sporadic outbreaks of severe hemorrhagic disease in sub-Saharan Africa. Bats have been implicated as likely natural reservoir hosts based most recently on an investigation of cases among miners infected in 2007 at the Kitaka mine, Uganda, which contained a large population of Marburg virus-infected Rousettus aegyptiacus fruit bats. Described here is an ecologic investigation of Python Cave, Uganda, where an American and a Dutch tourist acquired Marburg virus infection in December 2007 and July 2008. More than 40,000 R. aegyptiacus were found in the cave and were the sole bat species present. Between August 2008 and November 2009, 1,622 bats were captured and tested for Marburg virus. Q-RT-PCR analysis of bat liver/spleen tissues indicated ~2.5% of the bats were actively infected, seven of which yielded Marburg virus isolates. Moreover, Q-RT-PCR-positive lung, kidney, colon and reproductive tissues were found, consistent with potential for oral, urine, fecal or sexual transmission. The combined data for R. aegyptiacus tested from Python Cave and Kitaka mine indicate low level horizontal transmission throughout the year. However, Q-RT-PCR data show distinct pulses of virus infection in older juvenile bats (~six months of age) that temporarily coincide with the peak twice-yearly birthing seasons. Retrospective analysis of historical human infections suspected to have been the result of discrete spillover events directly from nature found 83% (54/65) events occurred during these seasonal pulses in virus circulation, perhaps demonstrating periods of increased risk of human infection. The discovery of two tags at Python Cave from bats marked at Kitaka mine, together with the close genetic linkages evident between viruses detected in geographically distant locations, are consistent with R. aegyptiacus bats existing as a large meta-population with associated virus circulation over broad geographic ranges. These findings provide a basis for developing Marburg hemorrhagic fever risk reduction strategies.


Asunto(s)
Quirópteros/virología , Enfermedad del Virus de Marburg/epidemiología , Enfermedad del Virus de Marburg/transmisión , Marburgvirus/aislamiento & purificación , Animales , Secuencia de Bases , Cuevas , Quirópteros/clasificación , Reservorios de Enfermedades , Femenino , Humanos , Masculino , Marburgvirus/genética , Proteínas Nucleares/genética , Filogenia , ARN Viral/análisis , Estudios Retrospectivos , Estaciones del Año , Análisis de Secuencia de ARN , Uganda/epidemiología , Proteínas Reguladoras y Accesorias Virales/genética
3.
Emerg Infect Dis ; 18(2): 248-55, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22304936

RESUMEN

Nipah virus (NiV) is a highly pathogenic paramyxovirus that causes fatal encephalitis in humans. The initial outbreak of NiV infection occurred in Malaysia and Singapore in 1998-1999; relatively small, sporadic outbreaks among humans have occurred in Bangladesh since 2001. We characterized the complete genomic sequences of identical NiV isolates from 2 patients in 2008 and partial genomic sequences of throat swab samples from 3 patients in 2010, all from Bangladesh. All sequences from patients in Bangladesh comprised a distinct genetic group. However, the detection of 3 genetically distinct sequences from patients in the districts of Faridpur and Gopalganj indicated multiple co-circulating lineages in a localized region over a short time (January-March 2010). Sequence comparisons between the open reading frames of all available NiV genes led us to propose a standardized protocol for genotyping NiV; this protcol provides a simple and accurate way to classify current and future NiV sequences.


Asunto(s)
Brotes de Enfermedades , Infecciones por Henipavirus/epidemiología , Virus Nipah/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Bangladesh/epidemiología , Niño , Secuencia Conservada , Femenino , Variación Genética , Genoma Viral , Infecciones por Henipavirus/virología , Humanos , Datos de Secuencia Molecular , Tipificación Molecular , Virus Nipah/aislamiento & purificación , Filogenia , Análisis de Secuencia de ADN , Estudios Seroepidemiológicos , Proteínas Virales/química , Proteínas Virales/genética
4.
Vector Borne Zoonotic Dis ; 12(1): 65-72, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21923274

RESUMEN

INTRODUCTION: We investigated a cluster of patients with encephalitis in the Manikgonj and Rajbari Districts of Bangladesh in February 2008 to determine the etiology and risk factors for disease. METHODS: We classified persons as confirmed Nipah cases by the presence of immunoglobulin M antibodies against Nipah virus (NiV), or by the presence of NiV RNA or by isolation of NiV from cerebrospinal fluid or throat swabs who had onset of symptoms between February 6 and March 10, 2008. We classified persons as probable cases if they reported fever with convulsions or altered mental status, who resided in the outbreak areas during that period, and who died before serum samples were collected. For the case-control study, we compared both confirmed and probable Nipah case-patients to controls, who were free from illness during the reference period. We used motion-sensor-infrared cameras to observe bat's contact of date palm sap. RESULTS: We identified four confirmed and six probable case-patients, nine (90%) of whom died. The median age of the cases was 10 years; eight were males. The outbreak occurred simultaneously in two communities that were 44 km apart and separated by a river. Drinking raw date palm sap 2-12 days before illness onset was the only risk factor most strongly associated with the illness (adjusted odds ratio 25, 95% confidence intervals 3.3-∞, p<0.001). Case-patients reported no history of physical contact with bats, though community members often reported seeing bats. Infrared camera photographs showed that Pteropus bats frequently visited date palm trees in those communities where sap was collected for human consumption. CONCLUSION: This is the second Nipah outbreak in Bangladesh where date palm sap has been implicated as the vehicle of transmission. Fresh date palm sap should not be drunk, unless effective steps have been taken to prevent bat access to the sap during collection.


Asunto(s)
Arecaceae , Encefalitis Viral/virología , Microbiología de Alimentos , Infecciones por Henipavirus/epidemiología , Virus Nipah , Adolescente , Adulto , Bangladesh/epidemiología , Estudios de Casos y Controles , Niño , Encefalitis Viral/epidemiología , Femenino , Infecciones por Henipavirus/virología , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo , Factores de Tiempo , Adulto Joven
5.
PLoS Negl Trop Dis ; 5(10): e1352, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21991403

RESUMEN

BACKGROUND: Alkhurma hemorrhagic fever virus (AHFV) and Kyasanur forest disease virus (KFDV) cause significant human disease and mortality in Saudi Arabia and India, respectively. Despite their distinct geographic ranges, AHFV and KFDV share a remarkably high sequence identity. Given its emergence decades after KFDV, AHFV has since been considered a variant of KFDV and thought to have arisen from an introduction of KFDV to Saudi Arabia from India. To gain a better understanding of the evolutionary history of AHFV and KFDV, we analyzed the full length genomes of 16 AHFV and 3 KFDV isolates. METHODOLOGY/PRINCIPAL FINDINGS: Viral genomes were sequenced and compared to two AHFV sequences available in GenBank. Sequence analyses revealed higher genetic diversity within AHFVs isolated from ticks than human AHFV isolates. A Bayesian coalescent phylogenetic analysis demonstrated an ancient divergence of AHFV and KFDV of approximately 700 years ago. CONCLUSIONS/SIGNIFICANCE: The high sequence diversity within tick populations and the presence of competent tick vectors in the surrounding regions, coupled with the recent identification of AHFV in Egypt, indicate possible viral range expansion or a larger geographic range than previously thought. The divergence of AHFV from KFDV nearly 700 years ago suggests other AHFV/KFDV-like viruses might exist in the regions between Saudi Arabia and India. Given the human morbidity and mortality associated with these viruses, these results emphasize the importance of more focused study of these significant public health threats.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas/genética , Virus de la Encefalitis Transmitidos por Garrapatas/aislamiento & purificación , Genoma Viral , ARN Viral/genética , Análisis de Secuencia de ADN , Animales , Egipto , Evolución Molecular , Variación Genética , Humanos , Mamíferos/virología , Datos de Secuencia Molecular , Filogenia , Garrapatas/virología
6.
Vector Borne Zoonotic Dis ; 11(11): 1459-64, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21756028

RESUMEN

Hantaviruses are distributed throughout the United States and are the etiologic agents for hantavirus pulmonary syndrome and hemorrhagic fever with renal syndrome. Hantavirus genotypes and epidemiologic patterns vary spatially across the United States. While several longitudinal studies have been performed in the western United States, little is known about the virus in the eastern United States. We undertook a longitudinal study of hantaviruses in the primary rodent reservoir host in central Pennsylvania, Peromyscus leucopus. Prevalence of hantavirus antibodies varied both by year and site, but was not correlated with host abundance. Males were significantly more likely to have antibodies to a hantavirus than females, and both antibody sero-conversion and antibody prevalence increased with mass class (indicator for age). Our findings suggest that one or more hantaviruses are present and circulating among P. leucopus of central Pennsylvania, and understanding the dynamics in this region could help prevent zoonotic transmission to humans. Our aim was to describe the differences in epizootiology of hantavirus infection in rodents from various geographical locations to enable improved analysis of the risk of rodent-to-human transmission and obtain insights that may indicate improved means of disease intervention.


Asunto(s)
Anticuerpos Antivirales/sangre , Reservorios de Enfermedades/virología , Infecciones por Hantavirus/epidemiología , Orthohantavirus/inmunología , Peromyscus/virología , Animales , Femenino , Geografía , Orthohantavirus/aislamiento & purificación , Infecciones por Hantavirus/sangre , Infecciones por Hantavirus/transmisión , Humanos , Modelos Lineales , Estudios Longitudinales , Masculino , Pennsylvania/epidemiología , Peromyscus/sangre
7.
PLoS One ; 5(10): e13570, 2010 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-21042407

RESUMEN

OBJECTIVE: In March 2007, we investigated a cluster of Nipah encephalitis to identify risk factors for Nipah infection in Bangladesh. METHODS: We defined confirmed Nipah cases by the presence of IgM and IgG antibodies against Nipah virus in serum. Case-patients, who resided in the same village during the outbreak period but died before serum could be collected, were classified as probable cases. RESULTS: We identified three confirmed and five probable Nipah cases. There was a single index case. Five of the secondary cases came in close physical contact to the index case when she was ill. Case-patients were more likely to have physical contact with the index case (71% cases versus 0% controls, p = <0.001). The index case, on her third day of illness, and all the subsequent cases attended the same religious gathering. For three probable cases including the index case, we could not identify any known risk factors for Nipah infection such as physical contact with Nipah case-patients, consumption of raw date palm juice, or contact with sick animals or fruit bats. CONCLUSION: Though person-to-person transmission remains an important mode of transmission for Nipah infection, we could not confirm the source of infection for three of the probable Nipah case-patients. Continued surveillance and outbreak investigations will help better understand the transmission of Nipah virus and develop preventive strategies.


Asunto(s)
Infecciones por Henipavirus/epidemiología , Virus Nipah/aislamiento & purificación , Adulto , Bangladesh/epidemiología , Estudios de Casos y Controles , Infecciones por Henipavirus/inmunología , Infecciones por Henipavirus/virología , Humanos , Inmunoglobulina G/inmunología , Inmunoglobulina M/inmunología , Persona de Mediana Edad
8.
Emerg Infect Dis ; 16(7): 1093-100, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20587180

RESUMEN

Lymphocytic choriomeningitis virus (LCMV) is the prototype of the family Arenaviridae. LCMV can be associated with severe disease in humans, and its global distribution reflects the broad dispersion of the primary rodent reservoir, the house mouse (Mus musculus). Recent interest in the natural history of the virus has been stimulated by increasing recognition of LCMV infections during pregnancy, and in clusters of LCMV-associated fatal illness among tissue transplant recipients. Despite its public health importance, little is known regarding the genetic diversity or distribution of virus variants. Genomic analysis of 29 LCMV strains collected from a variety of geographic and temporal sources showed these viruses to be highly diverse. Several distinct lineages exist, but there is little correlation with time or place of isolation. Bayesian analysis estimates the most recent common ancestor to be 1,000-5,000 years old, and this long history is consistent with complex phylogeographic relationships of the extant virus isolates.


Asunto(s)
Virus de la Coriomeningitis Linfocítica/genética , Animales , Teorema de Bayes , Femenino , Variación Genética , Humanos , Virus de la Coriomeningitis Linfocítica/clasificación , Ratones/virología , Persona de Mediana Edad
9.
J Infect Dis ; 202(2): 242-6, 2010 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-20521946

RESUMEN

BACKGROUND: Sin Nombre virus (SNV) is the primary cause of hantavirus pulmonary syndrome (HPS) in the United States. Although other studies have demonstrated a possible association between neutralizing antibody titers and the severity of HPS, the exact nature of serologic responses and their association with outcomes have not been fully characterized. METHODS: We examined immunoglobulin M (IgM) and immunoglobulin G (IgG) serologic responses in 94 clinical samples from 81 patients with confirmed HPS. We further compared a subset of 31 patients with fatal HPS and 20 surviving patients for whom samples were available within a week after the onset of HPS. RESULTS: SNV-specific IgM antibodies displayed a trend suggesting an early peak, whereas IgG antibody values peaked later. Among individuals with samples from the first week after the onset of HPS, all surviving patients had SNV-specific IgG responses, compared with <50% of patients with fatal HPS, and the distribution of IgG responses was significantly higher in surviving patients. CONCLUSIONS: Production of SNV-specific IgM antibodies occurs early during the clinical course of HPS, whereas production of IgG antibodies may be more protracted. The presence and overall distribution of higher IgG antibody titers in surviving patients with HPS suggests that production of SNV-specific IgG may be a strong predictor of favorable outcomes.


Asunto(s)
Anticuerpos Antivirales/sangre , Síndrome Pulmonar por Hantavirus/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Orthohantavirus/inmunología , Virus Sin Nombre/patogenicidad , Centers for Disease Control and Prevention, U.S. , Síndrome Pulmonar por Hantavirus/sangre , Síndrome Pulmonar por Hantavirus/mortalidad , Humanos , Valor Predictivo de las Pruebas , Virus Sin Nombre/inmunología , Análisis de Supervivencia , Sobrevivientes , Resultado del Tratamiento , Estados Unidos
10.
Emerg Infect Dis ; 15(8): 1229-35, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19751584

RESUMEN

Human Nipah outbreaks recur in a specific region and time of year in Bangladesh. Fruit bats are the reservoir host for Nipah virus. We identified 23 introductions of Nipah virus into human populations in central and northwestern Bangladesh from 2001 through 2007. Ten introductions affected multiple persons (median 10). Illness onset occurred from December through May but not every year. We identified 122 cases of human Nipah infection. The mean age of case-patients was 27 years; 87 (71%) died. In 62 (51%) Nipah virus-infected patients, illness developed 5-15 days after close contact with another Nipah case-patient. Nine (7%) Nipah case-patients transmitted virus to others. Nipah case-patients who had difficulty breathing were more likely than those without respiratory difficulty to transmit Nipah (12% vs. 0%, p = 0.03). Although a small minority of infected patients transmit Nipah virus, more than half of identified cases result from person-to-person transmission. Interventions to prevent virus transmission from bats to humans and from person to person are needed.


Asunto(s)
Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/transmisión , Infecciones por Henipavirus/epidemiología , Infecciones por Henipavirus/transmisión , Virus Nipah , Zoonosis/epidemiología , Zoonosis/transmisión , Adolescente , Adulto , Anciano , Animales , Bangladesh/epidemiología , Niño , Preescolar , Quirópteros/virología , Enfermedades Transmisibles Emergentes/mortalidad , Brotes de Enfermedades , Reservorios de Enfermedades/virología , Femenino , Infecciones por Henipavirus/mortalidad , Humanos , Masculino , Persona de Mediana Edad , Factores de Tiempo , Adulto Joven
11.
PLoS Pathog ; 5(7): e1000536, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19649327

RESUMEN

In July and September 2007, miners working in Kitaka Cave, Uganda, were diagnosed with Marburg hemorrhagic fever. The likely source of infection in the cave was Egyptian fruit bats (Rousettus aegyptiacus) based on detection of Marburg virus RNA in 31/611 (5.1%) bats, virus-specific antibody in bat sera, and isolation of genetically diverse virus from bat tissues. The virus isolates were collected nine months apart, demonstrating long-term virus circulation. The bat colony was estimated to be over 100,000 animals using mark and re-capture methods, predicting the presence of over 5,000 virus-infected bats. The genetically diverse virus genome sequences from bats and miners closely matched. These data indicate common Egyptian fruit bats can represent a major natural reservoir and source of Marburg virus with potential for spillover into humans.


Asunto(s)
Quirópteros/virología , Enfermedad del Virus de Marburg/virología , Marburgvirus/genética , Animales , Anticuerpos Antivirales/sangre , Antígenos Virales/sangre , Quirópteros/sangre , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Inmunohistoquímica , Hígado/química , Hígado/virología , Masculino , Enfermedad del Virus de Marburg/sangre , Marburgvirus/aislamiento & purificación , Filogenia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Uganda
12.
Emerg Infect Dis ; 15(4): 640-6, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19331761

RESUMEN

Etiologic studies of acute febrile disease were conducted in sites across South America, including Cusco and Iquitos, Peru. Patients' clinical signs and symptoms were recorded, and acute- and convalescent-phase serum samples were obtained for serologic examination and virus isolation in Vero E6 and C6/36 cells. Virus isolated in Vero E6 cells was identified as encephalomyocarditis virus (EMCV) by electron microscopy and by subsequent molecular diagnostic testing of samples from 2 febrile patients with nausea, headache, and dyspnea. The virus was recovered from acute-phase serum samples from both case-patients and identified with cardiovirus-specific reverse transcription-PCR and sequencing. Serum samples from case-patient 1 showed cardiovirus antibody by immunoglobulin M ELISA (acute phase <8, convalescent phase >1,024) and by neutralization assay (acute phase <10, convalescent phase >1,280). Serum samples from case-patient 2 did not contain antibodies detectable by either assay. Detection of virus in serum strongly supports a role for EMCV in human infection and febrile illness.


Asunto(s)
Infecciones por Cardiovirus/etiología , Enfermedades Transmisibles Emergentes/etiología , Virus de la Encefalomiocarditis/patogenicidad , Enfermedad Aguda , Adulto , Animales , Anticuerpos Antivirales/sangre , Secuencia de Bases , Infecciones por Cardiovirus/inmunología , Infecciones por Cardiovirus/virología , Chlorocebus aethiops , Enfermedades Transmisibles Emergentes/inmunología , Enfermedades Transmisibles Emergentes/virología , Cartilla de ADN/genética , Virus de la Encefalomiocarditis/clasificación , Virus de la Encefalomiocarditis/genética , Virus de la Encefalomiocarditis/ultraestructura , Femenino , Fiebre/etiología , Fiebre/inmunología , Fiebre/virología , Humanos , Masculino , Microscopía Electrónica de Transmisión , Persona de Mediana Edad , Perú , Filogenia , Vigilancia de la Población , ARN Viral/genética , ARN Viral/aislamiento & purificación , Células Vero
13.
PLoS Pathog ; 4(11): e1000212, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19023410

RESUMEN

Over the past 30 years, Zaire and Sudan ebolaviruses have been responsible for large hemorrhagic fever (HF) outbreaks with case fatalities ranging from 53% to 90%, while a third species, Côte d'Ivoire ebolavirus, caused a single non-fatal HF case. In November 2007, HF cases were reported in Bundibugyo District, Western Uganda. Laboratory investigation of the initial 29 suspect-case blood specimens by classic methods (antigen capture, IgM and IgG ELISA) and a recently developed random-primed pyrosequencing approach quickly identified this to be an Ebola HF outbreak associated with a newly discovered ebolavirus species (Bundibugyo ebolavirus) distantly related to the Côte d'Ivoire ebolavirus found in western Africa. Due to the sequence divergence of this new virus relative to all previously recognized ebolaviruses, these findings have important implications for design of future diagnostic assays to monitor Ebola HF disease in humans and animals, and ongoing efforts to develop effective antivirals and vaccines.


Asunto(s)
Brotes de Enfermedades , Ebolavirus/aislamiento & purificación , Fiebre Hemorrágica Ebola/virología , Antígenos Virales/análisis , Secuencia de Bases , Ensayo de Inmunoadsorción Enzimática , Fiebre Hemorrágica Ebola/epidemiología , Humanos , ARN Viral/genética , Uganda/epidemiología
14.
J Virol ; 82(22): 11152-66, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18786992

RESUMEN

Rift Valley fever (RVF) virus historically has caused widespread and extensive outbreaks of severe human and livestock disease throughout Africa, Madagascar, and the Arabian Peninsula. Following unusually heavy rainfall during the late autumn of 2006, reports of human and animal illness consistent with RVF virus infection emerged across semiarid regions of the Garissa District of northeastern Kenya and southern Somalia. Following initial RVF virus laboratory confirmation, a high-throughput RVF diagnostic facility was established at the Kenyan Central Veterinary Laboratories in Kabete, Kenya, to support the real-time identification of infected livestock and to facilitate outbreak response and control activities. A total of 3,250 specimens from a variety of animal species, including domesticated livestock (cattle, sheep, goats, and camels) and wildlife collected from a total of 55 of 71 Kenyan administrative districts, were tested by molecular and serologic assays. Evidence of RVF infection was found in 9.2% of animals tested and across 23 districts of Kenya, reflecting the large number of affected livestock and the geographic extent of the outbreak. The complete S, M, and/or L genome segment sequence was obtained from a total of 31 RVF virus specimens spanning the entire known outbreak period (December-May) and geographic areas affected by RVF virus activity. Extensive genomic analyses demonstrated the concurrent circulation of multiple virus lineages, gene segment reassortment, and the common ancestry of the 2006/2007 outbreak viruses with those from the 1997-1998 east African RVF outbreak. Evidence of recent increases in genomic diversity and effective population size 2 to 4 years prior to the 2006-2007 outbreak also was found, indicating ongoing RVF virus activity and evolution during the interepizootic/epidemic period. These findings have implications for further studies of basic RVF virus ecology and the design of future surveillance/diagnostic activities, and they highlight the critical need for safe and effective vaccines and antiviral compounds to combat this significant veterinary and public health threat.


Asunto(s)
Brotes de Enfermedades , Fiebre del Valle del Rift/veterinaria , Virus de la Fiebre del Valle del Rift/clasificación , Virus de la Fiebre del Valle del Rift/aislamiento & purificación , Animales , Animales Domésticos , Camelus , Bovinos , Enfermedades de los Bovinos/virología , Análisis por Conglomerados , Genotipo , Enfermedades de las Cabras/virología , Cabras , Humanos , Kenia/epidemiología , Epidemiología Molecular , Datos de Secuencia Molecular , Filogenia , Fiebre del Valle del Rift/virología , Virus de la Fiebre del Valle del Rift/genética , Análisis de Secuencia de ADN , Serotipificación , Ovinos , Enfermedades de las Ovejas/virología
15.
Clin Infect Dis ; 46(7): 977-84, 2008 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-18444812

RESUMEN

BACKGROUND: In Bangladesh, 4 outbreaks of Nipah virus infection were identified during the period 2001-2004. METHODS: We characterized the clinical features of Nipah virus-infected individuals affected by these outbreaks. We classified patients as having confirmed cases of Nipah virus infection if they had antibodies reactive with Nipah virus antigen. Patients were considered to have probable cases of Nipah virus infection if they had symptoms consistent with Nipah virus infection during the same time and in the same community as patients with confirmed cases. RESULTS: We identified 92 patients with Nipah virus infection, 67 (73%) of whom died. Although all age groups were affected, 2 outbreaks principally affected young persons (median age, 12 years); 62% of the affected persons were male. Fever, altered mental status, headache, cough, respiratory difficulty, vomiting, and convulsions were the most common signs and symptoms; clinical and radiographic features of acute respiratory distress syndrome of Nipah illness were identified during the fourth outbreak. Among those who died, death occurred a median of 6 days (range, 2-36 days) after the onset of illness. Patients who died were more likely than survivors to have a temperature >37.8 degrees C, altered mental status, difficulty breathing, and abnormal plantar reflexes. Among patients with Nipah virus infection who had well-defined exposure to another patient infected with Nipah virus, the median incubation period was 9 days (range, 6-11 days). CONCLUSIONS: Nipah virus infection produced rapidly progressive severe illness affecting the central nervous and respiratory systems. Clinical characteristics of Nipah virus infection in Bangladesh, including a severe respiratory component, appear distinct from clinical characteristics reported during earlier outbreaks in other countries.


Asunto(s)
Infecciones por Henipavirus/patología , Infecciones por Henipavirus/fisiopatología , Adolescente , Adulto , Anticuerpos Antivirales/sangre , Bangladesh/epidemiología , Niño , Preescolar , Brotes de Enfermedades , Femenino , Infecciones por Henipavirus/epidemiología , Infecciones por Henipavirus/mortalidad , Humanos , Masculino , Persona de Mediana Edad , Virus Nipah/inmunología , Virus Nipah/aislamiento & purificación , Radiografía Torácica , Síndrome de Dificultad Respiratoria/diagnóstico por imagen , Síndrome de Dificultad Respiratoria/patología , Síndrome de Dificultad Respiratoria/fisiopatología , Pruebas Serológicas , Factores de Tiempo
16.
PLoS Pathog ; 4(4): e1000047, 2008 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-18421377

RESUMEN

A small focus of hemorrhagic fever (HF) cases occurred near Cochabamba, Bolivia, in December 2003 and January 2004. Specimens were available from only one fatal case, which had a clinical course that included fever, headache, arthralgia, myalgia, and vomiting with subsequent deterioration and multiple hemorrhagic signs. A non-cytopathic virus was isolated from two of the patient serum samples, and identified as an arenavirus by IFA staining with a rabbit polyvalent antiserum raised against South American arenaviruses known to be associated with HF (Guanarito, Machupo, and Sabiá). RT-PCR analysis and subsequent analysis of the complete virus S and L RNA segment sequences identified the virus as a member of the New World Clade B arenaviruses, which includes all the pathogenic South American arenaviruses. The virus was shown to be most closely related to Sabiá virus, but with 26% and 30% nucleotide difference in the S and L segments, and 26%, 28%, 15% and 22% amino acid differences for the L, Z, N, and GP proteins, respectively, indicating the virus represents a newly discovered arenavirus, for which we propose the name Chapare virus. In conclusion, two different arenaviruses, Machupo and Chapare, can be associated with severe HF cases in Bolivia.


Asunto(s)
Arenavirus del Nuevo Mundo/aislamiento & purificación , Fiebre Hemorrágica Americana/virología , Adulto , Arenavirus del Nuevo Mundo/clasificación , Arenavirus del Nuevo Mundo/genética , Bolivia , Análisis por Conglomerados , Diagnóstico Diferencial , Resultado Fatal , Genoma Viral , Fiebre Hemorrágica Americana/diagnóstico , Humanos , Masculino , Filogenia , ARN Viral/genética , Análisis de Secuencia , Homología de Secuencia de Aminoácido , Dengue Grave/diagnóstico , Proteínas Virales , Fiebre Amarilla/diagnóstico
17.
Emerg Infect Dis ; 13(5): 719-25, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17553250

RESUMEN

In April 2005, 4 transplant recipients became ill after receiving organs infected with lymphocytic choriomeningitis virus (LCMV); 3 subsequently died. All organs came from a donor who had been exposed to a hamster infected with LCMV. The hamster was traced back through a Rhode Island pet store to a distribution center in Ohio, and more LCMV-infected hamsters were discovered in both. Rodents from the Ohio facility and its parent facility in Arkansas were tested for the same LCMV strain as the 1 involved in the transplant-associated deaths. Phylogenetic analysis of virus sequences linked the rodents from the Ohio facility to the Rhode Island pet store, the index hamster, and the transplant recipients. This report details the animal traceback and the supporting laboratory investigations.


Asunto(s)
Animales Domésticos/virología , Trazado de Contacto , Huésped Inmunocomprometido , Coriomeningitis Linfocítica/transmisión , Virus de la Coriomeningitis Linfocítica , Roedores/virología , Animales , Cobayas , Humanos , Virus de la Coriomeningitis Linfocítica/clasificación , Virus de la Coriomeningitis Linfocítica/genética , Ratones , Filogenia , Ratas , Trasplantes/efectos adversos , Estados Unidos/epidemiología , Zoonosis/transmisión , Zoonosis/virología
19.
Am J Trop Med Hyg ; 76(3): 438-42, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17360864

RESUMEN

Hantavirus pulmonary syndrome (HPS) is caused by an infection with viruses of the genus Hantavirus in the western hemisphere. Rodent hosts of hantaviruses are present throughout the United States. In July 2004, two HPS case-patients were identified in Randolph County, WV: a wildlife science graduate student working locally and a Randolph County resident. We interviewed family members and colleagues, reviewed medical records, and conducted environmental studies at likely exposure sites. Small mammals were trapped, and blood, urine, and tissue samples were submitted to the Centers for Disease Control and Prevention for laboratory analyses. These analyses confirmed that both patients were infected with Monongahela virus, a Sin Nombre hantavirus variant hosted by the Cloudland deer mouse, Peromyscus maniculatus nubiterrae. Other than one retrospectively diagnosed case in 1981, these are the first HPS cases reported in West Virginia. These cases emphasize the need to educate the public throughout the United States regarding risks and prevention measures for hantavirus infection.


Asunto(s)
Síndrome Pulmonar por Hantavirus/etiología , Virus Sin Nombre/aislamiento & purificación , Adulto , Animales , Reservorios de Enfermedades , Ecología , Humanos , Masculino , Peromyscus/virología , Filogenia , Virus Sin Nombre/clasificación
20.
Clin Vaccine Immunol ; 14(3): 331-3, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17229882

RESUMEN

Recombinant severe acute respiratory syndrome (SARS) nucleocapsid and spike protein-based immunoglobulin G immunoassays were developed and evaluated. Our assays demonstrated high sensitivity and specificity to the SARS coronavirus in sera collected from patients as late as 2 years postonset of symptoms. These assays will be useful not only for routine SARS coronavirus diagnostics but also for epidemiological and antibody kinetic studies.


Asunto(s)
Anticuerpos Antivirales/sangre , Glicoproteínas de Membrana/inmunología , Proteínas de la Nucleocápside/inmunología , Síndrome Respiratorio Agudo Grave/diagnóstico , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , Proteínas del Envoltorio Viral/inmunología , Proteínas de la Nucleocápside de Coronavirus , Ensayo de Inmunoadsorción Enzimática , Humanos , Proteínas Recombinantes/inmunología , Sensibilidad y Especificidad , Pruebas Serológicas , Glicoproteína de la Espiga del Coronavirus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA