RESUMEN
Introduction: Malignant pleural mesothelioma (MPM) is a poor-prognosis disease. Owing to the recent availability of new therapeutic options, there is a need to better assess prognosis. The initial clinical response could represent a useful parameter. Methods: We proposed a transfer learning approach to predict an initial treatment response starting from baseline CT scans of patients with advanced/unresectable MPM undergoing first-line systemic therapy. The therapeutic response has been assessed according to the mRECIST criteria by CT scan at baseline and after two to three treatment cycles. We used three slices of baseline CT scan as input to the pre-trained convolutional neural network as a radiomic feature extractor. We identified a feature subset through a double feature selection procedure to train a binary SVM classifier to discriminate responders (partial response) from non-responders (stable or disease progression). Results: The performance of the prediction classifiers was evaluated with an 80:20 hold-out validation scheme. We have evaluated how the developed model was robust to variations in the slices selected by the radiologist. In our dataset, 25 patients showed an initial partial response, whereas 13 patients showed progressive or stable disease. On the independent test, the proposed model achieved a median AUC and accuracy of 86.67% and 87.50%, respectively. Conclusions: The proposed model has shown high performance even by varying the reference slices. Novel tools could help to improve the prognostic assessment of patients with MPM and to better identify subgroups of patients with different therapeutic responsiveness.
RESUMEN
BACKGROUND: Nipple-areolar complex reconstruction is the final stage of breast reconstruction, and it improves quality of life in patients with post-mastectomy breast cancer. We present a case of a patient with breast cancer underwent breast reconstruction and subsequent nipple-areolar complex reconstruction with an innovative biocompatible smooth silicone implant specially designed for a long-lasting restoration of the nipple-areola complex called FixNip NRI. However, to our knowledge, nipple-areolar complex reconstruction with FixNip was not previously reported. INNOVATIVE TECHNIQUE: We present an emerging technique applied on a patient with breast cancer treated with skin-sparing mastectomy and with immediate breast reconstruction using an expander and then exchanged expander to breast implant. FixNip nipple reconstruction implant is implanted for the reconstruction of the areola-nipple complex with local-regional anaesthesia. She did not develop any postoperatively short-term or long-term complications, and her nipple slowly underwent to a gradual and better definition of its profile. CONCLUSION: This new approach regarding the reconstruction of the nipple-areola complex seems to be very promising in relation to both the degree of aesthetic satisfaction of patients and the ease of use by surgeons. LEVEL OF EVIDENCE V: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
RESUMEN
BACKGROUND: Risk stratification and treatment benefit prediction models are urgent to improve negative sentinel lymph node (SLN-) melanoma patient selection, thus avoiding costly and toxic treatments in patients at low risk of recurrence. To this end, the application of artificial intelligence (AI) could help clinicians to better calculate the recurrence risk and choose whether to perform adjuvant therapy. METHODS: We made use of AI to predict recurrence-free status (RFS) within 2-years from diagnosis in 94 SLN- melanoma patients. In detail, we detected quantitative imaging information from H&E slides of a cohort of 71 SLN- melanoma patients, who registered at Istituto Tumori "Giovanni Paolo II" in Bari, Italy (investigational cohort, IC). For each slide, two expert pathologists firstly annotated two Regions of Interest (ROIs) containing tumor cells alone (TUMOR ROI) or with infiltrating cells (TUMOR + INF ROI). In correspondence of the two kinds of ROIs, two AI-based models were developed to extract information directly from the tiles in which each ROI was automatically divided. This information was then used to predict RFS. Performances of the models were computed according to a 5-fold cross validation scheme. We further validated the prediction power of the two models on an independent external validation cohort of 23 SLN- melanoma patients (validation cohort, VC). RESULTS: The TUMOR ROIs have revealed more informative than the TUMOR + INF ROIs. An Area Under the Curve (AUC) value of 79.1% and 62.3%, a sensitivity value of 81.2% and 76.9%, a specificity value of 70.0% and 43.3%, an accuracy value of 73.2% and 53.4%, were achieved on the TUMOR and TUMOR + INF ROIs extracted for the IC cohort, respectively. An AUC value of 76.5% and 65.2%, a sensitivity value of 66.7% and 41.6%, a specificity value of 70.0% and 55.9%, an accuracy value of 70.0% and 56.5%, were achieved on the TUMOR and TUMOR + INF ROIs extracted for the VC cohort, respectively. CONCLUSIONS: Our approach represents a first effort to develop a non-invasive prognostic method to better define the recurrence risk and improve the management of SLN- melanoma patients.
Asunto(s)
Inteligencia Artificial , Melanoma , Ganglio Linfático Centinela , Humanos , Melanoma/patología , Melanoma/diagnóstico por imagen , Ganglio Linfático Centinela/patología , Ganglio Linfático Centinela/diagnóstico por imagen , Femenino , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/patología , Anciano , Adulto , Reproducibilidad de los Resultados , Recurrencia , Curva ROCRESUMEN
BACKGROUND: Oncology nurses support cancer patients in meeting their self-care needs, often neglecting their own emotions and self-care needs. This study aims to investigate the variations in the five facets of holistic mindfulness among Italian oncology nurses based on gender, work experience in oncology, and shift work. METHOD: A cross-sectional study was carried out in 2023 amongst all registered nurses who were employed in an oncology setting and working in Italy. RESULTS: There were no significant differences in all five facets of holistic mindfulness (p ≥ 0.05) according to gender, work experience in the oncology field, and shift work. CONCLUSION: Could holistic mindfulness be defined as an intrinsic individual characteristic? Surely, more insights will be necessary to better define the holistic trend in oncology nursing.
RESUMEN
BACKGROUND: International guidelines recommend a pathway for preferable nursing handling in a specific cancer topic, like chemotherapy toxicity, low adhesion in toxicity reported with a consequential increase in adverse events (AEs) frequency, poorer QoL outcomes, and increased use of healthcare service until death. Unpredictability, postponed reports, and incapability to access healthcare services can compromise toxicity-related effects by including patients' safety. In this scenario, a more attentive nursing intervention can improve patients' outcomes and decrease costs for healthcare services, respectively. The present scoping review aims to describe and synthesize scientific care nursing evidence assessment in oncology patients. METHODS: PubMed, Embase, Nursing & Allied Health Database, and British Nursing were the databases examined. Keywords used and associated with Boolean operators were assessment, care, nursing, immune disorder, oncology, and patient. Research articles considered were published between 2013-2023. All systematic processes were performed according to the PRISMA procedure in order to reach all manuscripts considered in the present scoping review. RESULTS: The Embase database showed a total of 25 articles, PubMed displayed 77, the Nursing & Allied Health Database evidenced a total of 74, and the British Nursing database showed 252 records. Then, after a first revision in each database by considering the inclusion criteria, the abovementioned titles and abstracts were selected and, 336 records were removed, and 92 studies remained. Of these, 65 manuscripts were excluded after verifying abstracts. Finally, a total of 7 articles were carefully analysed and selected for this scoping review. Specifically, 2 articles belonged to the British Nursing Database, 3 articles belonged to Embase, 1 to the Nursing & Allied Health Database and one related to PubMed. CONCLUSION: Oncology nursing should consider several aspects, such as therapy-related toxicity and its related morbidity and mortality, worsening levels of quality of life, and increasing duty by the healthcare organization or endorsements for the principal symptoms and signs which may anticipate few diseases and worst clinical conditions, too. Therefore, careful monitoring may allow prompt recognition and subsequent earlier management in the treatment efficacy.
RESUMEN
Several studies have emphasised how positive and negative human papillomavirus (HPV+ and HPV-, respectively) oropharyngeal squamous cell carcinoma (OPSCC) has distinct molecular profiles, tumor characteristics, and disease outcomes. Different radiomics-based prediction models have been proposed, by also using innovative techniques such as Convolutional Neural Networks (CNNs). Although some of these models reached encouraging predictive performances, there evidence explaining the role of radiomic features in achieving a specific outcome is scarce. In this paper, we propose some preliminary results related to an explainable CNN-based model to predict HPV status in OPSCC patients. We extracted the Gross Tumor Volume (GTV) of pre-treatment CT images related to 499 patients (356 HPV+ and 143 HPV-) included into the OPC-Radiomics public dataset to train an end-to-end Inception-V3 CNN architecture. We also collected a multicentric dataset consisting of 92 patients (43 HPV+ , 49 HPV-), which was employed as an independent test set. Finally, we applied Gradient-weighted Class Activation Mapping (Grad-CAM) technique to highlight the most informative areas with respect to the predicted outcome. The proposed model reached an AUC value of 73.50% on the independent test. As a result of the Grad-CAM algorithm, the most informative areas related to the correctly classified HPV+ patients were located into the intratumoral area. Conversely, the most important areas referred to the tumor edges. Finally, since the proposed model provided additional information with respect to the accuracy of the classification given by the visualization of the areas of greatest interest for predictive purposes for each case examined, it could contribute to increase confidence in using computer-based predictive models in the actual clinical practice.
Asunto(s)
Redes Neurales de la Computación , Neoplasias Orofaríngeas , Infecciones por Papillomavirus , Tomografía Computarizada por Rayos X , Humanos , Neoplasias Orofaríngeas/virología , Neoplasias Orofaríngeas/diagnóstico por imagen , Neoplasias Orofaríngeas/patología , Tomografía Computarizada por Rayos X/métodos , Infecciones por Papillomavirus/diagnóstico por imagen , Infecciones por Papillomavirus/virología , Infecciones por Papillomavirus/patología , Masculino , Femenino , Papillomaviridae , Persona de Mediana Edad , Anciano , Carcinoma de Células Escamosas/diagnóstico por imagen , Carcinoma de Células Escamosas/virología , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/virología , Carcinoma de Células Escamosas de Cabeza y Cuello/diagnóstico por imagen , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carga Tumoral , Virus del Papiloma HumanoRESUMEN
BACKGROUND: Accurate characterization of newly diagnosed a solid adnexal lesion is a key step in defining the most appropriate therapeutic approach. Despite guidance from the International Ovarian Tumor Analyzes Panel, the evaluation of these lesions can be challenging. Recent studies have demonstrated how machine learning techniques can be applied to clinical data to solve this diagnostic problem. However, ML models can often consider as black-boxes due to the difficulty of understanding the decision-making process used by the algorithm to obtain a specific result. AIMS: For this purpose, we propose an Explainable Artificial Intelligence model trained on clinical characteristics and qualitative ultrasound indicators to predict solid adnexal masses diagnosis. MATERIALS & METHODS: Since the diagnostic task was a three-class problem (benign tumor, invasive cancer, or ovarian metastasis), we proposed a waterfall classification model: a first model was trained and validated to discriminate benign versus malignant, a second model was trained to distinguish nonmetastatic versus metastatic malignant lesion which occurs when a patient is predicted to be malignant by the first model. Firstly, a stepwise feature selection procedure was implemented. The classification performances were validated on Leave One Out scheme. RESULTS: The accuracy of the three-class model reaches an overall accuracy of 86.36%, and the precision per-class of the benign, nonmetastatic malignant, and metastatic malignant classes were 86.96%, 87.27%, and 77.78%, respectively. DISCUSSION: SHapley Additive exPlanations were performed to visually show how the machine learning model made a specific decision. For each patient, the SHAP values expressed how each characteristic contributed to the classification result. Such information represents an added value for the clinical usability of a diagnostic system. CONCLUSIONS: This is the first work that attempts to design an explainable machine-learning tool for the histological diagnosis of solid masses of the ovary.
Asunto(s)
Enfermedades de los Anexos , Aprendizaje Automático , Neoplasias Ováricas , Ultrasonografía , Humanos , Femenino , Ultrasonografía/métodos , Neoplasias Ováricas/diagnóstico por imagen , Neoplasias Ováricas/patología , Neoplasias Ováricas/diagnóstico , Persona de Mediana Edad , Adulto , Enfermedades de los Anexos/diagnóstico por imagen , Enfermedades de los Anexos/patología , Anciano , Algoritmos , Diagnóstico DiferencialRESUMEN
BACKGROUND: So far, baseline Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) has played a key role for the application of sophisticated artificial intelligence-based models using Convolutional Neural Networks (CNNs) to extract quantitative imaging information as earlier indicators of pathological Complete Response (pCR) achievement in breast cancer patients treated with neoadjuvant chemotherapy (NAC). However, these models did not exploit the DCE-MRI exams in their full geometry as 3D volume but analysed only few individual slices independently, thus neglecting the depth information. METHOD: This study aimed to develop an explainable 3D CNN, which fulfilled the task of pCR prediction before the beginning of NAC, by leveraging the 3D information of post-contrast baseline breast DCE-MRI exams. Specifically, for each patient, the network took in input a 3D sequence containing the tumor region, which was previously automatically identified along the DCE-MRI exam. A visual explanation of the decision-making process of the network was also provided. RESULTS: To the best of our knowledge, our proposal is competitive than other models in the field, which made use of imaging data alone, reaching a median AUC value of 81.8%, 95%CI [75.3%; 88.3%], a median accuracy value of 78.7%, 95%CI [74.8%; 82.5%], a median sensitivity value of 69.8%, 95%CI [59.6%; 79.9%] and a median specificity value of 83.3%, 95%CI [82.6%; 84.0%], respectively. The median and CIs were computed according to a 10-fold cross-validation scheme for 5 rounds. CONCLUSION: Finally, this proposal holds high potential to support clinicians on non-invasively early pursuing or changing patient-centric NAC pathways.
Asunto(s)
Neoplasias de la Mama , Terapia Neoadyuvante , Humanos , Femenino , Terapia Neoadyuvante/métodos , Inteligencia Artificial , Medios de Contraste/uso terapéutico , Resultado del Tratamiento , Imagen por Resonancia Magnética/métodos , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patologíaRESUMEN
Non-Small cell lung cancer (NSCLC) is one of the most dangerous cancers, with 85% of all new lung cancer diagnoses and a 30-55% of recurrence rate after surgery. Thus, an accurate prediction of recurrence risk in NSCLC patients during diagnosis could be essential to drive targeted therapies preventing either overtreatment or undertreatment of cancer patients. The radiomic analysis of CT images has already shown great potential in solving this task; specifically, Convolutional Neural Networks (CNNs) have already been proposed providing good performances. Recently, Vision Transformers (ViTs) have been introduced, reaching comparable and even better performances than traditional CNNs in image classification. The aim of the proposed paper was to compare the performances of different state-of-the-art deep learning algorithms to predict cancer recurrence in NSCLC patients. In this work, using a public database of 144 patients, we implemented a transfer learning approach, involving different Transformers architectures like pre-trained ViTs, pre-trained Pyramid Vision Transformers, and pre-trained Swin Transformers to predict the recurrence of NSCLC patients from CT images, comparing their performances with state-of-the-art CNNs. Although, the best performances in this study are reached via CNNs with AUC, Accuracy, Sensitivity, Specificity, and Precision equal to 0.91, 0.89, 0.85, 0.90, and 0.78, respectively, Transformer architectures reach comparable ones with AUC, Accuracy, Sensitivity, Specificity, and Precision equal to 0.90, 0.86, 0.81, 0.89, and 0.75, respectively. Based on our preliminary experimental results, it appears that Transformers architectures do not add improvements in terms of predictive performance to the addressed problem.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Aprendizaje Profundo , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/cirugía , Neoplasias Pulmonares/diagnóstico por imagen , Recurrencia Local de Neoplasia/diagnóstico por imagen , Redes Neurales de la ComputaciónRESUMEN
BACKGROUND: About 15%-20% of breast cancer (BC) cases is classified as Human Epidermal growth factor Receptor type 2 (HER2) positive. The Neoadjuvant chemotherapy (NAC) was initially introduced for locally advanced and inflammatory BC patients to allow a less extensive surgical resection, whereas now it represents the current standard for early-stage and operable BC. However, only 20%-40% of patients achieve pathologic complete response (pCR). According to the results of practice-changing clinical trials, the addition of trastuzumab to NAC brings improvements to pCR, and recently, the use of pertuzumab plus trastuzumab has registered further statistically significant and clinically meaningful improvements in terms of pCR. The goal of our work is to propose a machine learning model to predict the pCR to NAC in HER2-positive patients based on a subset of clinical features. METHOD: First, we evaluated the significant association of clinical features with pCR on the retrospectively collected data referred to 67 patients afferent to Istituto Tumori "Giovanni Paolo II." Then, we performed a feature selection procedure to identify a subset of features to be used for training a machine learning-based classification algorithm. As a result, pCR to NAC was associated with ER status, Pgr status, and HER2 score. RESULTS: The machine learning model trained on a subgroup of essential features reached an AUC of 73.27% (72.44%-73.66%) and an accuracy of 71.67% (71.64%-73.13%). According to our results, the clinical features alone are not enough to define a support system useful for clinical pathway. CONCLUSION: Our results seem worthy of further investigation in large validation studies and this work could be the basis of future study that will also involve radiomics analysis of biomedical images.
Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Pronóstico , Terapia Neoadyuvante/métodos , Estudios Retrospectivos , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Trastuzumab/uso terapéutico , Aprendizaje Automático , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéuticoRESUMEN
Introduction: It has been estimated that 19,880 new cases of ovarian cancer had been diagnosed in 2022. Most epithelial ovarian cancer are sporadic, while in 15%-25% of cases, there is evidence of a familial or inherited component. Approximately 20%-25% of high-grade serous carcinoma cases are caused by germline mutations in the BRCA1 and BRCA2 genes. However, owing to a lack of effective early detection methods, women with BRCA mutations are recommended to undergo bilateral risk-reducing salpingo-oophorectomy (RRSO) after childbearing. Determining the right timing for this procedure is a difficult decision. It is crucial to find a clinical signature to identify high-risk BRCA-mutated patients and determine the appropriate timing for performing RRSO. Methods: In this work, clinical data referred to a cohort of 184 patients, of whom 7.6% were affected by adnexal tumors including invasive carcinomas and intraepithelial lesions after RSSO has been analyzed. Thus, we proposed an explainable machine learning (ML) ensemble approach using clinical data commonly collected in clinical practice to early identify BRCA-mutated patients at high risk of ovarian cancer and consequentially establish the correct timing for RRSO. Results: The ensemble model was able to handle imbalanced data achieving an accuracy value of 83.2%, a specificity value of 85.3%, a sensitivity value of 57.1%, a G-mean value of 69.8%, and an AUC value of 71.1%. Discussion: In agreement with the promising results achieved, the application of suitable ML techniques could play a key role in the definition of a BRCA-mutated patient-centric clinical signature for ovarian cancer risk and consequently personalize the management of these patients. As far as we know, this is the first work addressing this task from an ML perspective.
RESUMEN
For endocrine-positive Her2 negative breast cancer patients at an early stage, the benefit of adding chemotherapy to adjuvant endocrine therapy is not still confirmed. Several genomic tests are available on the market but are very expensive. Therefore, there is the urgent need to explore novel reliable and less expensive prognostic tools in this setting. In this paper, we shown a machine learning survival model to estimate Invasive Disease-Free Events trained on clinical and histological data commonly collected in clinical practice. We collected clinical and cytohistological outcomes of 145 patients referred to Istituto Tumori "Giovanni Paolo II". Three machine learning survival models are compared with the Cox proportional hazards regression according to time-dependent performance metrics evaluated in cross-validation. The c-index at 10 years obtained by random survival forest, gradient boosting, and component-wise gradient boosting is stabled with or without feature selection at approximately 0.68 in average respect to 0.57 obtained to Cox model. Moreover, machine learning survival models have accurately discriminated low- and high-risk patients, and so a large group which can be spared additional chemotherapy to hormone therapy. The preliminary results obtained by including only clinical determinants are encouraging. The integrated use of data already collected in clinical practice for routine diagnostic investigations, if properly analyzed, can reduce time and costs of the genomic tests.
Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Terapia Combinada , Hormonas , Pronóstico , Modelos de Riesgos Proporcionales , Receptor ErbB-2/genética , Aprendizaje AutomáticoRESUMEN
Non-small cell lung cancer (NSCLC) represents 85% of all new lung cancer diagnoses and presents a high recurrence rate after surgery. Thus, an accurate prediction of recurrence risk in NSCLC patients at diagnosis could be essential to designate risk patients to more aggressive medical treatments. In this manuscript, we apply a transfer learning approach to predict recurrence in NSCLC patients, exploiting only data acquired during its screening phase. Particularly, we used a public radiogenomic dataset of NSCLC patients having a primary tumor CT image and clinical information. Starting from the CT slice containing the tumor with maximum area, we considered three different dilatation sizes to identify three Regions of Interest (ROIs): CROP (without dilation), CROP 10 and CROP 20. Then, from each ROI, we extracted radiomic features by means of different pre-trained CNNs. The latter have been combined with clinical information; thus, we trained a Support Vector Machine classifier to predict the NSCLC recurrence. The classification performances of the devised models were finally evaluated on both the hold-out training and hold-out test sets, in which the original sample has been previously divided. The experimental results showed that the model obtained analyzing CROP 20 images, which are the ROIs containing more peritumoral area, achieved the best performances on both the hold-out training set, with an AUC of 0.73, an Accuracy of 0.61, a Sensitivity of 0.63, and a Specificity of 0.60, and on the hold-out test set, with an AUC value of 0.83, an Accuracy value of 0.79, a Sensitivity value of 0.80, and a Specificity value of 0.78. The proposed model represents a promising procedure for early predicting recurrence risk in NSCLC patients.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/genética , Tomografía Computarizada por Rayos X/métodos , Aprendizaje AutomáticoRESUMEN
BACKGROUND: A timely diagnosis is essential for improving breast cancer patients' survival and designing targeted therapeutic plans. For this purpose, the screening timing, as well as the related waiting lists, are decisive. Nonetheless, even in economically advanced countries, breast cancer radiology centres fail in providing effective screening programs. Actually, a careful hospital governance should encourage waiting lists reduction programs, not only for improving patients care, but also for minimizing costs associated with the treatment of advanced cancers. Thus, in this work, we proposed a model to evaluate several scenarios for an optimal distribution of the resources invested in a Department of Breast Radiodiagnosis. MATERIALS AND METHODS: Particularly, we performed a cost-benefit analysis as a technology assessment method to estimate both costs and health effects of the screening program, to maximise both benefits related to the quality of care and resources employed by the Department of Breast Radiodiagnosis of Istituto Tumori "Giovanni Paolo II" of Bari in 2019. Specifically, we determined the Quality-Adjusted Life Year (QALY) for estimating health outcomes, in terms of usefulness of two hypothetical screening strategies with respect to the current one. While the first hypothetical strategy adds one team made up of a doctor, a technician and a nurse, along with an ultrasound and a mammograph, the second one adds two afternoon teams. RESULTS: This study showed that the most cost-effective incremental ratio could be achieved by reducing current waiting lists from 32 to 16 months. Finally, our analysis revealed that this strategy would also allow to include more people in the screening programs (60,000 patients in 3 years).
Asunto(s)
Neoplasias de la Mama , Radiología , Humanos , Femenino , Análisis Costo-Beneficio , Listas de Espera , MamografíaRESUMEN
In recent years, immediate breast reconstruction after mastectomy surgery has steadily increased in the treatment pathway of breast cancer (BC) patients due to its potential impact on both the morpho-functional and aesthetic type of the breast and the quality of life. Although recent studies have demonstrated how recent radiotherapy techniques have allowed a reduction of adverse events related to breast reconstruction, capsular contracture (CC) remains the main complication after post-mastectomy radio-therapy (PMRT). In this study, we evaluated the association of the occurrence of CC with some clinical, histological and therapeutic parameters related to BC patients. We firstly performed bivariate statistical tests and we then evaluated the prognostic predictive power of the collected data by using machine learning techniques. Out of a sample of 59 patients referred to our institute, 28 patients (i.e., 47%) showed contracture after PMRT. As a result, only estrogen receptor status (ER) and molecular subtypes were significantly associated with the occurrence of CC after PMRT. Different machine learning models were trained on a subset of clinical features selected by a feature importance approach. Experimental results have shown that collected features have a non-negligible predictive power. The extreme gradient boosting classifier achieved an area under the curve (AUC) value of 68% and accuracy, sensitivity, and specificity values of 68%, 64%, and 74%, respectively. Such a support tool, after further suitable optimization and validation, would allow clinicians to identify the best therapeutic strategy and reconstructive timing.
RESUMEN
Introduction: Recently, accurate machine learning and deep learning approaches have been dedicated to the investigation of breast cancer invasive disease events (IDEs), such as recurrence, contralateral and second cancers. However, such approaches are poorly interpretable. Methods: Thus, we designed an Explainable Artificial Intelligence (XAI) framework to investigate IDEs within a cohort of 486 breast cancer patients enrolled at IRCCS Istituto Tumori "Giovanni Paolo II" in Bari, Italy. Using Shapley values, we determined the IDE driving features according to two periods, often adopted in clinical practice, of 5 and 10 years from the first tumor diagnosis. Results: Age, tumor diameter, surgery type, and multiplicity are predominant within the 5-year frame, while therapy-related features, including hormone, chemotherapy schemes and lymphovascular invasion, dominate the 10-year IDE prediction. Estrogen Receptor (ER), proliferation marker Ki67 and metastatic lymph nodes affect both frames. Discussion: Thus, our framework aims at shortening the distance between AI and clinical practice.
RESUMEN
[This corrects the article DOI: 10.3389/fmed.2022.993395.].
RESUMEN
The application of deep learning on whole-slide histological images (WSIs) can reveal insights for clinical and basic tumor science investigations. Finding quantitative imaging biomarkers from WSIs directly for the prediction of disease-free survival (DFS) in stage I-III melanoma patients is crucial to optimize patient management. In this study, we designed a deep learning-based model with the aim of learning prognostic biomarkers from WSIs to predict 1-year DFS in cutaneous melanoma patients. First, WSIs referred to a cohort of 43 patients (31 DF cases, 12 non-DF cases) from the Clinical Proteomic Tumor Analysis Consortium Cutaneous Melanoma (CPTAC-CM) public database were firstly annotated by our expert pathologists and then automatically split into crops, which were later employed to train and validate the proposed model using a fivefold cross-validation scheme for 5 rounds. Then, the model was further validated on WSIs related to an independent test, i.e. a validation cohort of 11 melanoma patients (8 DF cases, 3 non-DF cases), whose data were collected from Istituto Tumori 'Giovanni Paolo II' in Bari, Italy. The quantitative imaging biomarkers extracted by the proposed model showed prognostic power, achieving a median AUC value of 69.5% and a median accuracy of 72.7% on the public cohort of patients. These results remained comparable on the validation cohort of patients with an AUC value of 66.7% and an accuracy value of 72.7%, respectively. This work is contributing to the recently undertaken investigation on how treat features extracted from raw WSIs to fulfil prognostic tasks involving melanoma patients. The promising results make this study as a valuable basis for future research investigation on wider cohorts of patients referred to our Institute.
Asunto(s)
Aprendizaje Profundo , Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/patología , Supervivencia sin Enfermedad , Proteómica , Melanoma Cutáneo MalignoRESUMEN
Background and purpose: Although the latest breakthroughs in radiotherapy (RT) techniques have led to a decrease in adverse event rates, these techniques are still associated with substantial toxicity, including xerostomia. Imaging biomarkers could be useful to predict the toxicity risk related to each individual patient. Our preliminary work aims to develop a radiomic-based support tool exploiting pre-treatment CT images to predict late xerostomia risk in 3 months after RT in patients with oropharyngeal cancer (OPC). Materials and methods: We performed a multicenter data collection. We enrolled 61 patients referred to three care centers in Apulia, Italy, out of which 22 patients experienced at least mild xerostomia 3 months after the end of the RT cycle. Pre-treatment CT images, clinical and dose features, and alcohol-smoking habits were collected. We proposed a transfer learning approach to extract quantitative imaging features from CT images by means of a pre-trained convolutional neural network (CNN) architecture. An optimal feature subset was then identified to train an SVM classifier. To evaluate the robustness of the proposed model with respect to different manual contouring practices on CTs, we repeated the same image analysis pipeline on "fake" parotid contours. Results: The best performances were achieved by the model exploiting the radiomic features alone. On the independent test, the model reached median AUC, accuracy, sensitivity, and specificity values of 81.17, 83.33, 71.43, and 90.91%, respectively. The model was robust with respect to diverse manual parotid contouring procedures. Conclusion: Radiomic analysis could help to develop a valid support tool for clinicians in planning radiotherapy treatment, by providing a risk score of the toxicity development for each individual patient, thus improving the quality of life of the same patient, without compromising patient care.
RESUMEN
Designing targeted treatments for breast cancer patients after primary tumor removal is necessary to prevent the occurrence of invasive disease events (IDEs), such as recurrence, metastasis, contralateral and second tumors, over time. However, due to the molecular heterogeneity of this disease, predicting the outcome and efficacy of the adjuvant therapy is challenging. A novel ensemble machine learning classification approach was developed to address the task of producing prognostic predictions of the occurrence of breast cancer IDEs at both 5- and 10-years. The method is based on the concept of voting among multiple models to give a final prediction for each individual patient. Promising results were achieved on a cohort of 529 patients, whose data, related to primary breast cancer, were provided by Istituto Tumori "Giovanni Paolo II" in Bari, Italy. Our proposal greatly improves the performances returned by the baseline original model, i.e., without voting, finally reaching a median AUC value of 77.1% and 76.3% for the IDE prediction at 5-and 10-years, respectively. Finally, the proposed approach allows to promote more intelligible decisions and then a greater acceptability in clinical practice since it returns an explanation of the IDE prediction for each individual patient through the voting procedure.