Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 22724, 2024 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-39349927

RESUMEN

The discovery that the lung harbors a diverse microbiome, as revealed by next-generation sequencing, has significantly altered our understanding of respiratory health and disease. Despite the association between the lung microbiota and disease, the nature of their relationship remains poorly understood, and culture isolation of these microorganisms could help to determine their role in lung physiology. Current procedures for processing samples from the lower respiratory tract have been shown to affect the viability of microorganisms, so it is crucial to develop new methods to improve their survival. This study aimed to improve the isolation and characterization of lung microorganisms using a bead-beating homogenization method in a mouse model. Microsphere diameter and bead-beating time affected the survival of the microorganisms (E. coli, S. aureus and C. albicans). Using 2.3 mm diameter microspheres for 60 s of bead-beating promoted the survival of both bacteria and yeast strains. After intratracheal instillation of these microorganisms in mice, approximately 70% of the cells were recovered after the tissue homogenization. To assess the efficiency of the proposed method, the diversity of bacteria was compared between the homogenate and lung tissue samples. Ninety-one genera were detected in the lung tissue, and 63 in the homogenate. Bacterial genera detected in the homogenate represented 84% of the total abundance of the microbiota identified in the lung tissue. Taken together, these results demonstrate that the tissue homogenization process developed in this study recovered the majority of the microorganisms present in the lung. This study presents a bead-beating homogenization method for effective cultivation of lung tissue microorganisms, which may help to improve the understanding of host-microbe interactions in the lung.


Asunto(s)
Pulmón , Microbiota , Animales , Pulmón/microbiología , Ratones , Microesferas , Staphylococcus aureus , Candida albicans/aislamiento & purificación , Escherichia coli/aislamiento & purificación , Bacterias/aislamiento & purificación , Bacterias/clasificación , Bacterias/genética
2.
Biomark Res ; 12(1): 25, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355595

RESUMEN

In recent decades, preterm birth (PTB) has become a significant research focus in the healthcare field, as it is a leading cause of neonatal mortality worldwide. Using five independent study cohorts including 1290 vaginal samples from 561 pregnant women who delivered at term (n = 1029) or prematurely (n = 261), we analysed vaginal metagenomics data for precise microbiome structure characterization. Then, a deep neural network (DNN) was trained to predict term birth (TB) and PTB with an accuracy of 84.10% and an area under the receiver operating characteristic curve (AUROC) of 0.875 ± 0.11. During a benchmarking process, we demonstrated that our DL model outperformed seven currently used machine learning algorithms. Finally, our results indicate that overall diversity of the vaginal microbiota should be taken in account to predict PTB and not specific species. This artificial-intelligence based strategy should be highly helpful for clinicians in predicting preterm birth risk, allowing personalized assistance to address various health issues. DeepMPTB is open source and free for academic use. It is licensed under a GNU Affero General Public License 3.0 and is available at https://deepmptb.streamlit.app/ . Source code is available at https://github.com/oschakoory/DeepMPTB and can be easily installed using Docker ( https://www.docker.com/ ).

3.
Virus Res ; 340: 199293, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38101578

RESUMEN

Although next-generation sequencing technologies are advancing rapidly, many research topics often require selective sequencing of genomic regions of interest. In addition, sequencing low-titre viruses is challenging, especially for coronaviruses, which are the largest RNA viruses. Prior to sequencing, enrichment of viral particles can help to significantly increase target sequence information as well as avoid large sequencing efforts and, consequently, can increase sensitivity and reduce sequencing costs. Targeting nucleic acids using capture by hybridization is another efficient method that can be performed by applying complementary probes (DNA or RNA baits) to directly enrich genetic information of interest while removing background non-target material. In studies where sequence capture by hybridization has been applied to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, most authors agree that this technique is useful to easily access sequence targets in complex samples. Furthermore, this approach allows for complete or near-complete sequencing of the viral genome, even in samples with low viral load or poor nucleic acid integrity. In addition, this strategy is highly efficient at discovering new variants by facilitating downstream investigations, such as phylogenetics, epidemiology, and evolution. Commercial kits, as well as in-house protocols, have been developed for enrichment of viral sequences. However, these kits have multiple variations in procedure, with differences in performance. This review compiles and describes studies in which hybridization capture has been applied to SARS-CoV-2 variant genomes.


Asunto(s)
COVID-19 , Virus , Humanos , SARS-CoV-2/genética , Virus/genética , Hibridación de Ácido Nucleico , Genoma Viral
4.
Methods Mol Biol ; 2605: 187-208, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36520395

RESUMEN

Next-generation sequencing technologies have impressively unlocked capacities to depict the complexity of microbial communities. Microbial community structure is for now routinely monitored by sequencing of 16S rRNA gene, a phylogenetic marker almost conserved among bacteria and archaea. Nevertheless, amplicon sequencing, the most popular used approach, suffers from several biases impacting the picture of microbial communities. Here, we describe an innovative method based on gene capture by hybridization for the targeted enrichment of 16S rDNA biomarker from metagenomic samples. Coupled to near full-length 16S rDNA reconstruction, this approach enables an exhaustive and accurate description of microbial communities by enhancing taxonomic and phylogenetic resolutions. Furthermore, access of captured 16S flanking regions opens link between structure and function in microbial communities.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Metagenómica , ARN Ribosómico 16S/genética , Filogenia , Genes de ARNr , Análisis de Secuencia de ADN/métodos , Metagenómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Biología Computacional , ADN Ribosómico/genética
5.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36361736

RESUMEN

How specific interactions between plant and pathogenic, commensal, or mutualistic microorganisms are mediated and how bacteria are selected by a plant are important questions to address. Here, an Arabidopsis thaliana mutant called chs5 partially deficient in the biogenesis of isoprenoid precursors was shown to extend its metabolic remodeling to phenylpropanoids and lipids in addition to carotenoids, chlorophylls, and terpenoids. Such a metabolic profile was concomitant to increased colonization of the phyllosphere by the pathogenic strain Pseudomonas syringae pv. tomato DC3000. A thorough microbiome analysis by 16S sequencing revealed that Streptomyces had a reduced colonization potential in chs5. This study revealed that the bacteria-Arabidopsis interaction implies molecular processes impaired in the chs5 mutant. Interestingly, our results revealed that the metabolic status of A. thaliana was crucial for the specific recruitment of Streptomyces into the microbiota. More generally, this study highlights specific as well as complex molecular interactions that shape the plant microbiota.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Streptomyces , Arabidopsis/metabolismo , Streptomyces/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Pseudomonas syringae/metabolismo , Proteínas de Arabidopsis/metabolismo
6.
NAR Genom Bioinform ; 4(3): lqac070, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36159175

RESUMEN

Metagenomic classifiers are widely used for the taxonomic profiling of metagenomics data and estimation of taxa relative abundance. Small subunit rRNA genes are a gold standard for phylogenetic resolution of microbiota, although the power of this marker comes down to its use as full-length. We aimed at identifying the tools that can efficiently lead to taxonomic resolution down to the species level. To reach this goal, we benchmarked the performance and accuracy of rRNA-specialized versus general-purpose read mappers, reference-targeted assemblers and taxonomic classifiers. We then compiled the best tools (BBTools, FastQC, SortMeRNA, MetaRib, EMIRGE, VSEARCH, BBMap and QIIME 2's Sklearn classifier) to build a pipeline called RiboTaxa. Using metagenomics datasets, RiboTaxa gave the best results compared to other tools (i.e. Kraken2, Centrifuge, METAXA2, phyloFlash, SPINGO, BLCA, MEGAN) with precise taxonomic identification and relative abundance description without false positive detection (F-measure of 100% and 83.7% at genus level and species level, respectively). Using real datasets from various environments (i.e. ocean, soil, human gut) and from different approaches (e.g. metagenomics and gene capture by hybridization), RiboTaxa revealed microbial novelties not discerned by current bioinformatics analysis opening new biological perspectives in human and environmental health.

7.
Appl Microbiol Biotechnol ; 106(8): 2993-3007, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35435459

RESUMEN

Fungal dye-decolorizing peroxidases (DyPs) have found applications in the treatment of dye-contaminated industrial wastes or to improve biomass digestibility. Their roles in fungal biology are uncertain, although it has been repeatedly suggested that they could participate in lignin degradation and/or modification. Using a comprehensive set of 162 fully sequenced fungal species, we defined seven distinct fungal DyP clades on basis of a sequence similarity network. Sequences from one of these clades clearly diverged from all others, having on average the lower isoelectric points and hydropathy indices, the highest number of N-glycosylation sites, and N-terminal sequence peptides for secretion. Putative proteins from this clade are absent from brown-rot and ectomycorrhizal species that have lost the capability of degrading lignin enzymatically. They are almost exclusively present in white-rot and other saprotrophic Basidiomycota that digest lignin enzymatically, thus lending support for a specific role of DyPs from this clade in biochemical lignin modification. Additional nearly full-length fungal DyP genes were isolated from the environment by sequence capture by hybridization; they all belonged to the clade of the presumably secreted DyPs and to another related clade. We suggest focusing our attention on the presumably intracellular DyPs from the other clades, which have not been characterized thus far and could represent enzyme proteins with novel catalytic properties. KEY POINTS: • A fungal DyP phylogeny delineates seven main sequence clades. • Putative extracellular DyPs form a single clade of Basidiomycota sequences. • Extracellular DyPs are associated to white-rot fungi.


Asunto(s)
Basidiomycota , Peroxidasa , Basidiomycota/metabolismo , Colorantes/metabolismo , Proteínas Fúngicas/metabolismo , Lignina/metabolismo , Peroxidasa/química , Peroxidasa/genética , Peroxidasas/genética , Peroxidasas/metabolismo
8.
J Fungi (Basel) ; 7(5)2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33919051

RESUMEN

The functional diversity of the New Caledonian mangrove sediments was examined, observing the distribution of fungal dye-decolorizing peroxidases (DyPs), together with the complete biochemical characterization of the main DyP. Using a functional metabarcoding approach, the diversity of expressed genes encoding fungal DyPs was investigated in surface and deeper sediments, collected beneath either Avicennia marina or Rhizophora stylosa trees, during either the wet or the dry seasons. The highest DyP diversity was observed in surface sediments beneath the R. stylosa area during the wet season, and one particular operational functional unit (OFU1) was detected as the most abundant DyP isoform. This OFU was found in all sediment samples, representing 51-100% of the total DyP-encoding sequences in 70% of the samples. The complete cDNA sequence corresponding to this abundant DyP (OFU 1) was retrieved by gene capture, cloned, and heterologously expressed in Pichia pastoris. The recombinant enzyme, called DyP1, was purified and characterized, leading to the description of its physical-chemical properties, its ability to oxidize diverse phenolic substrates, and its potential to decolorize textile dyes; DyP1 was more active at low pH, though moderately stable over a wide pH range. The enzyme was very stable at temperatures up to 50 °C, retaining 60% activity after 180 min incubation. Its ability to decolorize industrial dyes was also tested on Reactive Blue 19, Acid Black, Disperse Blue 79, and Reactive Black 5. The effect of hydrogen peroxide and sea salt on DyP1 activity was studied and compared to what is reported for previously characterized enzymes from terrestrial and marine-derived fungi.

9.
Appl Microbiol Biotechnol ; 104(23): 10233-10247, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33085024

RESUMEN

In vitro gut models, such as the mucosal artificial colon (M-ARCOL), provide timely and cost-efficient alternatives to in vivo assays allowing mechanistic studies to better understand the role of human microbiome in health and disease. Using such models inoculated with human fecal samples may require a critical step of stool storage. The effects of preservation methods on microbial structure and function in in vitro gut models have been poorly investigated. This study aimed to assess the impact of three commonly used preserving methods, compared with fresh fecal samples used as a control, on the kinetics of lumen and mucus-associated microbiota colonization in the M-ARCOL model. Feces from two healthy donors were frozen 48 h at - 80 °C with or without cryoprotectant (10% glycerol) or lyophilized with maltodextrin and trehalose prior to inoculation of four parallel bioreactors (e.g., fresh stool, raw stool stored at - 80 °C, stool stored at - 80 °C with glycerol and lyophilized stool). Microbiota composition and diversity (qPCR and 16S metabarcoding) as well as metabolic activity (gases and short chain fatty acids) were monitored throughout the fermentation process (9 days). All the preservative treatments allowed the maintaining inside the M-ARCOL of a complex and functional microbiota, but considering stabilization time of microbial profiles and activities (and not technical constraints associated with the supply of frozen material), our results highlighted 48 h freezing at - 80 °C without cryoprotectant as the most efficient method. These results will help scientists to determine the most accurate method for fecal storage prior to inoculation of in vitro gut microbiome models. KEY POINTS: • In vitro ARCOL model reproduces luminal and mucosal human microbiome. • Short-term storage of fecal sample influences microbial stabilization and activity. • 48 h freezing at - 80°C: most efficient method to preserve microbial ecosystem. • Scientific and technical requirements: influencers of preservation method.


Asunto(s)
Microbioma Gastrointestinal , Colon , Heces , Humanos , ARN Ribosómico 16S/genética , Manejo de Especímenes
10.
Nutrients ; 11(3)2019 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-30893845

RESUMEN

B-type oligomeric procyanidins in apples constitute an important source of polyphenols in the human diet. Their role in health is not known, although it is suggested that they generate beneficial bioactive compounds upon metabolization by the gut microbiota. During apple processing, procyanidins interact with cell-wall polysaccharides and form stable complexes. These interactions need to be taken into consideration in order to better assess the biological effects of fruit constituents. Our objectives were to evaluate the impact of these interactions on the microbial metabolization of cell walls and procyanidins, and to investigate the potential anti-inflammatory activity of the resulting metabolome, in addition to analyzing the taxonomical changes which the microbiota undergo. In vitro fermentation of three model apple matrices with microbiota from 4 healthy donors showed that the binding of procyanidins to cell-wall polysaccharides, whether covalently or non-covalently, substantially reduced procyanidin degradation. Although cell wall-unbound procyanidins negatively affected carbohydrate fermentation, they generated more hydroxyphenylvaleric acid than bound procyanidins, and increased the abundance of Adlercreutzia and Gordonibacter genera. The best results in terms of production of anti-inflammatory bioactive metabolites were observed from the apple matrix with no bonds between procyanidins and cell wall polysaccharides, although the matrix with non-covalent bonds was not far behind.


Asunto(s)
Antiinflamatorios/farmacología , Bacterias/efectos de los fármacos , Frutas/química , Microbioma Gastrointestinal/efectos de los fármacos , Malus/química , Proantocianidinas/metabolismo , Antiinflamatorios/química , Bacterias/metabolismo , Pared Celular , Fermentación , Humanos , Proantocianidinas/química
11.
Front Microbiol ; 9: 215, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29487591

RESUMEN

Ruminants fulfill their energy needs for growth primarily through microbial breakdown of plant biomass in the rumen. Several biotic and abiotic factors influence the efficiency of fiber degradation, which can ultimately impact animal productivity and health. To provide more insight into mechanisms involved in the modulation of fibrolytic activity, a functional DNA microarray targeting genes encoding key enzymes involved in cellulose and hemicellulose degradation by rumen microbiota was designed. Eight carbohydrate-active enzyme (CAZyme) families (GH5, GH9, GH10, GH11, GH43, GH48, CE1, and CE6) were selected which represented 392 genes from bacteria, protozoa, and fungi. The DNA microarray, designated as FibroChip, was validated using targets of increasing complexity and demonstrated sensitivity and specificity. In addition, FibroChip was evaluated for its explorative and semi-quantitative potential. Differential expression of CAZyme genes was evidenced in the rumen bacterium Fibrobacter succinogenes S85 grown on wheat straw or cellobiose. FibroChip was used to identify the expressed CAZyme genes from the targeted families in the rumen of a cow fed a mixed diet based on grass silage. Among expressed genes, those encoding GH43, GH5, and GH10 families were the most represented. Most of the F. succinogenes genes detected by the FibroChip were also detected following RNA-seq analysis of RNA transcripts obtained from the rumen fluid sample. Use of the FibroChip also indicated that transcripts of fiber degrading enzymes derived from eukaryotes (protozoa and anaerobic fungi) represented a significant proportion of the total microbial mRNA pool. FibroChip represents a reliable and high-throughput tool that enables researchers to monitor active members of fiber degradation in the rumen.

12.
Front Microbiol ; 8: 67, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28197133

RESUMEN

Ruminants have a unique ability to derive energy from the degradation of plant polysaccharides through the activity of the rumen microbiota. Although this process is well studied in vitro, knowledge gaps remain regarding the relative contribution of the microbiota members and enzymes in vivo. The present study used RNA-sequencing to reveal both the expression of genes encoding carbohydrate-active enzymes (CAZymes) by the rumen microbiota of a lactating dairy cow and the microorganisms forming the fiber-degrading community. Functional analysis identified 12,237 CAZymes, accounting for 1% of the transcripts. The CAZyme profile was dominated by families GH94 (cellobiose-phosphorylase), GH13 (amylase), GH43 and GH10 (hemicellulases), GH9 and GH48 (cellulases), PL11 (pectinase) as well as GH2 and GH3 (oligosaccharidases). Our data support the pivotal role of the most characterized fibrolytic bacteria (Prevotella, Ruminocccus and Fibrobacter), and highlight a substantial, although most probably underestimated, contribution of fungi and ciliate protozoa to polysaccharide degradation. Particularly these results may motivate further exploration of the role and the functions of protozoa in the rumen. Moreover, an important part of the fibrolytic bacterial community remains to be characterized since one third of the CAZyme transcripts originated from distantly related strains. These findings are used to highlight limitations of current metatranscriptomics approaches to understand the functional rumen microbial community and opportunities to circumvent them.

14.
BMC Genomics ; 17: 326, 2016 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-27142817

RESUMEN

BACKGROUND: Plant cell wall (PCW) polysaccharides and especially xylans constitute an important part of human diet. Xylans are not degraded by human digestive enzymes in the upper digestive tract and therefore reach the colon where they are subjected to extensive degradation by some members of the symbiotic microbiota. Xylanolytic bacteria are the first degraders of these complex polysaccharides and they release breakdown products that can have beneficial effects on human health. In order to understand better how these bacteria metabolize xylans in the colon, this study was undertaken to investigate xylan breakdown by the prominent human gut symbiont Bacteroides xylanisolvens XB1A(T). RESULTS: Transcriptomic analyses of B. xylanisolvens XB1A(T) grown on insoluble oat-spelt xylan (OSX) at mid- and late-log phases highlighted genes in a polysaccharide utilization locus (PUL), hereafter called PUL 43, and genes in a fragmentary remnant of another PUL, hereafter referred to as rPUL 70, which were highly overexpressed on OSX relative to glucose. Proteomic analyses supported the up-regulation of several genes belonging to PUL 43 and showed the important over-production of a CBM4-containing GH10 endo-xylanase. We also show that PUL 43 is organized in two operons and that the knockout of the PUL 43 sensor/regulator HTCS gene blocked the growth of the mutant on insoluble OSX and soluble wheat arabinoxylan (WAX). The mutation not only repressed gene expression in the PUL 43 operons but also repressed gene expression in rPUL 70. CONCLUSION: This study shows that xylan degradation by B. xylanisolvens XB1A(T) is orchestrated by one PUL and one PUL remnant that are linked at the transcriptional level. Coupled to studies on other xylanolytic Bacteroides species, our data emphasize the importance of one peculiar CBM4-containing GH10 endo-xylanase in xylan breakdown and that this modular enzyme may be used as a functional marker of xylan degradation in the human gut. Our results also suggest that B. xylanisolvens XB1A(T) has specialized in the degradation of xylans of low complexity. This functional feature may provide a niche to all xylanolytic bacteria harboring similar PULs. Further functional and ecological studies on fibrolytic Bacteroides species are needed to better understand their role in dietary fiber degradation and their impact on intestinal health.


Asunto(s)
Proteínas Bacterianas/genética , Bacteroides/crecimiento & desarrollo , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia de ARN/métodos , Xilanos/metabolismo , Proteínas Bacterianas/metabolismo , Bacteroides/genética , Bacteroides/metabolismo , Tracto Gastrointestinal/microbiología , Regulación Bacteriana de la Expresión Génica , Humanos , Familia de Multigenes , Operón , Proteínas de Plantas/metabolismo , Proteómica/métodos
15.
BMC Genomics ; 17: 147, 2016 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-26920945

RESUMEN

BACKGROUND: Diet and particularly dietary fibres have an impact on the gut microbiome and play an important role in human health and disease. Pectin is a highly consumed dietary fibre found in fruits and vegetables and is also a widely used additive in the food industry. Yet there is no information on the effect of pectin on the human gut microbiome. Likewise, little is known on gut pectinolytic bacteria and their enzyme systems. This study was undertaken to investigate the mechanisms of pectin degradation by the prominent human gut symbiont Bacteroides xylanisolvens. RESULTS: Transcriptomic analyses of B. xylanisolvens XB1A grown on citrus and apple pectins at mid- and late-log phases highlighted six polysaccharide utilization loci (PUL) that were overexpressed on pectin relative to glucose. The PUL numbers used in this report are those given by Terrapon et al. (Bioinformatics 31(5):647-55, 2015) and found in the PUL database: http://www.cazy.org/PULDB/. Based on their CAZyme composition, we propose that PUL 49 and 50, the most overexpressed PULs on both pectins and at both growth phases, are involved in homogalacturonan (HG) and type I rhamnogalacturonan (RGI) degradation, respectively. PUL 13 and PUL 2 could be involved in the degradation of arabinose-containing side chains and of type II rhamnogalacturonan (RGII), respectively. Considering that HG is the most abundant moiety (>70%) within pectin, the importance of PUL 49 was further investigated by insertion mutagenesis into the susC-like gene. The insertion blocked transcription of the susC-like and the two downstream genes (susD-like/FnIII). The mutant showed strong growth reduction, thus confirming that PUL 49 plays a major role in pectin degradation. CONCLUSION: This study shows the existence of six PULs devoted to pectin degradation by B. xylanisolvens, one of them being particularly important in this function. Hence, this species deploys a very complex enzymatic machinery that probably reflects the structural complexity of pectin. Our findings also highlight the metabolic plasticity of B. xylanisolvens towards dietary fibres that contributes to its competitive fitness within the human gut ecosystem. Wider functional and ecological studies are needed to understand how dietary fibers and especially plant cell wall polysaccharides drive the composition and metabolism of the fibrolytic and non-fibrolytic community within the gut microbial ecosystem.


Asunto(s)
Bacteroides/metabolismo , Fibras de la Dieta/metabolismo , Pectinas/metabolismo , Análisis de Secuencia de ARN/métodos , Bacteroides/genética , Citrus/química , Sitios Genéticos , Malus/química , Mutagénesis , ARN Bacteriano/genética , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...